
Anton Andrejko

Novel Approaches
to Acquisition and Maintenance

of User Model

Dissertation thesis

Slovak University of Technology
Bratislava, Slovakia

Anton Andrejko

Novel Approaches
to Acquisition and Maintenance

of User Model

Dissertation thesis

This thesis is submitted
in fulfilment of the requirements

for the degree of philosophiae doctor (PhD.)
in the field of Software Engineering

Study program: Software Systems
Field of study: Software Engineering

Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technologies

Slovak University of Technology

Supervisor: Prof. Mária Bieliková
January 2009

Author: Anton Andrejko
Faculty of Informatics and Information Technology
Slovak University of Technology
Ilkovičova 3
842 16 Bratislava
Slovakia

Supervisor: Prof. Mária Bieliková (Slovak University of Technology, Bratislava)
Reviewers: Assoc. Prof. Ivan Jelínek (Czech Technical University, Prague)

Assoc. Prof. Petr Šaloun (University of Ostrava, Ostrava)

Head of the Board of specialists in software engineering:
Prof. Pavol Návrat (Slovak University of Technology, Bratislava)

Keywords: adaptation, concepts similarity, personalization, ontology,
semantic web, spreading activation, user, user modeling,
user characteristic

ACM Subject Classification:
D.2.13 [Reusable Software] Reuse models;
H.3.3 [Information Search and Retrieval] Selection process;
H.3.4 [Systems and Software] User profiles and alert services;
H.5.4 [Hypertext/Hypermedia] User issues;
K.3.1 [Computer Uses in Education] Computer-assisted instruction

Copyright c© 2009 by Anton Andrejko
Slovak University of Technology, Bratislava, Slovakia

All rights reserved. Subject to exceptions provided for by law, no part of this thesis may
be reproduced, stored in retrieval systems, or transmitted in any form by any means,
mechanical, photocopying, recording, or otherwise, without written consent of the author.
No part of this publication may be adapted in whole or in part without the prior written
permission of the author.

This thesis was set in Computer Modern Roman by the author using LATEX2ε.

Abstract

Novel Approaches to Acquisition and Maintenance of User Model

There are many problems related to the Web — one aspect is that it is
overloaded by huge amount of information where a searcher can get lost in
information space, spending excessive time reading irrelevant and unproduc-
tive content, etc. These problems can be partially overcome by employing
personalization (the Adaptive Web), semantics (the Semantic Web) or social
relationships (the Social Web). In our research, we focus on the user mod-
eling area and we exploit existing knowledge, mostly from the Adaptive and
Semantic Web. User model in the adaptive web-based applications consists
of user’s characteristics that are used for personalization of layout, navigation
or content. There are methods that use explicit or implicit approaches, or
their combination to acquire user characteristics and keep them up to date.
The result is that accurate personalization can be provided to a user.

In this work we present a contribution to the current state of the art in the
user modeling area, namely we focus on creation and maintenance of the user
model. We propose three novel methods for acquisition and maintenance of
user characteristics in the user model. The first method is based on generat-
ing questions to be used for user model. Particular questions are generated
according to the attributes of information concepts that are the subject of
the specific application domain. The entire process of asking questions is
driven by user defined rules. The second method is based on the content
analysis and assumes that comparing attributes of documents, which were
found interesting for a user, can be a source for discovering information about
user’s interests. We use ontology structure and different similarity metrics to
compute similarity between instances of ontological concepts. Moreover, we
impute reasons that might have caused user’s interest in the content. The
third and last method is based on spreading activation. If there are connec-
tions between information concepts (e.g., learning objects in an educational
application) of the domain model user’s characteristics can be utilized even
for concepts that have not been visited yet. In such a way, more accurate and
responsive information retrieval capabilities for the user become available.

The proposed methods were evaluated by means of software tools that
were incorporated in research projects aimed at job offers, digital libraries
and learning programming domains that have been solved at the Institute
of Informatics and Software Engineering, Faculty of Informatics and Infor-
mation Technologies at Slovak University of Technology in Bratislava in the
period of 2004–2008.

Ing. Anton Andrejko

Nové prístupy
k získavaniu a udržiavaniu

modelu používateľa

Dizertačná práca

Dizertačná práca na získanie
vedecko-akademickej hodnosti philosophiae doctor

v odbore Softvérové inžinierstvo

Študijný program: Programové systémy
Študijný odbor: Softvérové inžinierstvo

Ústav informatiky a softvérového inžinierstva
Fakulta informatiky a informačných technológií

Slovenská technická univerzita

Školiteľ: Prof. Ing. Mária Bieliková, PhD.
Január 2009

Autor: Ing. Anton Andrejko
Fakulta informatiky a informačných technológií
Slovenská technická univerzita
Ilkovičova 3
842 16 Bratislava

Školiteľ: Prof. Ing. Mária Bieliková, PhD.
(Slovenská technická univerzita, Bratislava)

Oponenti: Doc. Ing. Ivan Jelínek, CSc. (České vysoké učení technické, Praha)
Doc. RNDr. Petr Šaloun, Ph.D. (Ostravská univerzita, Ostrava)

Predseda odborovej komisie pre softvérové inžnierstvo:
Prof. Ing. Pavol Návrat, PhD. (Slovenská technická univerzita, Bratislava)

Kľúčové slová: adaptácia, podobnosť konceptov, personalizácia, ontológia,
web so sémantikou, šírenie aktivácie, používateľ,
model používateľa, charakteristika používateľa

ACM klasifikácia pojmov:
D.2.13 [Znovupoužiteľný softvér] Znovupoužiteľné modely;
H.3.3 [Vyhľadávanie a získavanie informácií] Proces výberu;
H.3.4 [Systémy a softvér] Používateľský profil a služby upozorňovania;
H.5.4 [Hypertext/Hypermédiá] Problémy používateľov;
K.3.1 [Použitie počítačov vo vzdelávaní] Počítačom asistovaná výučba

Copyright c© 2009 Anton Andrejko
Slovenská technická univerzita v Bratislave

Všetky práva vyhradené. Reprodukcia, prenos, šírenie alebo ukladanie časti alebo celého
obsahu tejto práce v akejkoľvek forme bez predchádzajúceho písomného súhlasu autora je
zakázané.

Táto práca bola vysádzaná písmom Computer Modern Roman použitím LATEX2ε.

Abstrakt

Nové prístupy k získavaniu a udržiavaniu modelu používateľa

S rozšírením webu súvisia viaceré problémy, napr. používateľ je preťažený
veľkým množstvom informácií, stráca sa v informačnom priestore, trávi veľa
času čítaním obsahu, ktorý ho nezaujíma a pod. Čiastočné riešenie tých-
to problémov ponúka zapojenie personalizácie (adaptívny web), sémantiky
(sémantický web) alebo sociálnych vzťahov (sociálny web). V tejto práci
sa zameriavame na oblasť modelovania používateľa, kde využívame najmä
poznatky z výskumu adaptívneho webu a webu so sémantikou. V adaptív-
nych webových aplikáciách model používateľa obsahuje charakteristiky, ktoré
slúžia na prispôsobovanie vzhľadu, navigácie alebo obsahu. V praxi sa použí-
vajú rôzne implicitné a explicitné prístupy (alebo ich kombinácia) na získanie
charakteristík používateľa a ich udržiavanie. Následne môže byť uskutočnené
prispôsobovanie individuálnemu používateľovi.

Predstavujeme príspevok k aktuálnemu stavu poznania v oblasti modelo-
vania používateľa. Zameriavame sa najmä na vytváranie a udržiavanie mo-
delu používateľa. Na tento účel sme navrhli tri nové metódy na získavanie
a udržiavanie charakteristík používateľa v modeli používateľa. Prvá metóda
je založená na generovaní otázok. Jednotlivé otázky sú generované na základe
atribútov konceptov, ktoré sa používajú vo zvolenej aplikačnej doméne. Celý
proces generovania otázok je riadený používateľom definovanými pravidlami.
Metóda založená na analýze obsahu predpokladá, že porovnávanie atribútov
dokumentov, o ktoré sa používateľ zaujíma, môže slúžiť ako zdroj informácií
o používateľových záujmoch. Zavedenie výpočtu podobnosti pre jednotlivé
atribúty nám umožňuje využiť sémantiku z ontologickej reprezentácie. Pri
výpočte využívame štruktúru ontológie a rôzne metriky podobnosti. Navyše
skúmame dôvody, ktoré mohli spôsobiť používateľov záujem o čítaný obsah.
Posledná metóda je založená na šírení aktivácie. Ak medzi informačnými
konceptmi v doméne existujú spojenia, potom jednotlivé charakteristiky mô-
žu byť zmenené aj pre koncepty, ktoré používateľ ešte nenavštívil. Takýmto
spôsobom môžeme ponúknuť používateľovi presnejšie prispôsobovanie.

Navrhnuté metódy boli overené softvérovými nástrojmi, ktoré boli zapo-
jené do výskumných projektov zameraných na oblasť pracovných ponúk, digi-
tálnych knižníc a na výučbu programovania riešenými na Ústave informatiky
a softvérového inžinierstva Fakulty informatiky a informačných technológií
Slovenskej technickej univerzity v Bratislave v období 2004–2008.

Acknowledgement

I would like to thank my supervisor Mária Bieliková for her advice which
was invaluable help throughout my studies and work on this thesis. I am
also thankful for having a chance to cooperate with two great students of
mine, Michal Šimún and Tomáš Klempa. The cooperation with them con-
tributed with some great ideas to this thesis. Furthermore, I appreciated
the comments which I was provided with from the reviewers, Assoc. Prof.
Ivan Jelínek and Assoc. Prof. Petr Šaloun, which were an asset as well, and
helped to improve quality of this work. I am also grateful to Mike Nix and
his family for their patience in thoroughly proofreading this thesis. And last
but not least, there are many others who already know how grateful I am for
their support.

Contents

I Setting the Stage 1

1 Introduction 3

2 Thesis objectives 7

II Related Work and State of the Art 9

3 Adaptive Semantic Web 11
3.1 Models of adaptive web-based applications 12
3.2 Adding semantics to adaptive applications 16
3.3 Ontology as a mean for representation 18

4 User modeling 23
4.1 User characteristics . 23
4.2 Approaches to user modeling 26
4.3 User model representation . 31
4.4 Acquisition and maintenance of user characteristics 34
4.5 Open problems . 39

III Acquisition and Maintenance Methods 43

5 Acquisition of user characteristics based on questions 45
5.1 Principle of generating a question 46
5.2 Binding characteristics . 50
5.3 Rules for question generation 52
5.4 Evaluation . 53
5.5 Discussion . 56

6 Acquisition of user characteristics based on content analysis 59
6.1 Recursive traversing of ontology instances 61

xiii

xiv

6.2 Comparison metrics . 63
6.3 Similarity estimation . 68
6.4 Personalized similarity and user characteristics 72
6.5 Evaluation . 73
6.6 Discussion . 78

7 Maintenance of user characteristics based on spreading acti-
vation 81
7.1 Models of adaptive web-based educational system 82
7.2 Maintenance of the user characteristics by spreading change . 86
7.3 Evaluation . 94
7.4 Discussion . 96

IV Outlook 99

8 Contributions 101

Bibliography 105

A About the author 115

B Publications by author 117

C Software tools for acquisition and maintenance of the user
model 121
C.1 Explicit Actualizer . 121
C.2 Concept Comparer . 122
C.3 Student Model Updater . 123

Part I

Setting the Stage

1

Chapter 1

Introduction

Information technologies have become a part of our lives in recent history and
using services provided by the Web have become especially popular world
wide. The reason why it is so accepted is because of its availability for
almost everyone. The Web is the source of information for any age groups.
One limitation is that not everybody is computer-literate and able to find
the appropriate information effectively. Some people can find what they are
looking for very easily and quickly whereas others can not function effectively
in the Web environment. Even skillful Web users appreciate tools and utilities
that make their search work easier as well.

Even though the Semantic Web introduces solutions to some problems,
there are still many problems that limit the speed and extent of its expan-
sion. Problems related to interoperability across various systems are caused
by the existence and use of many ontology languages for knowledge represen-
tation. Therefore, many tools are being developed to address problems such
as ontology mapping, ontology integration, merging and alignment. Existing
solutions solve most posed problems more or less automatically.

Semantic Web technology and applications also inherit problems from its
ancestor, i.e. the Web as we know it today. The amount and density of knowl-
edge we expect to be available may cause significant problems. One problem
is simple overload by huge amount of information where a searcher can get
lost in information space resulting in time consuming and unproductive in-
formation searches. These data volume based unproductive search problems
can be partially overcome if we take into account a user’s particular search
characteristics and we exploit existing search optimization approaches that
are currently used in adaptive web-based applications.

The user model in adaptive web-based applications consists of identifying
user’s characteristics that are used for personalization of layout, navigation
or content. There are several approaches used to acquire user characteristics

3

4 1 Introduction

and keep them up to date. One method to acquire the user characteristics is
to ask the user explicitly or observe the user’s behavior while working with
the application (implicit feedback). Another useful approach is to mine the
user characteristics from logs, which can be processed on client-side and/or
server-side. Another variation of this approach is an acquisition of user char-
acteristics from logs with semantics while an estimation of the user’s actions
from the logs is performed aimed at the user model update. The logging (and
implicit feedback in general) requires sequential processing to transform ac-
quired information into the user characteristics. Analyzing content that is
presented to a user is another good source of information about the user. If
we know a user’s given rating to displayed content (e.g., user’s interest) we
can acquire some characteristics by analyzing similar and different aspects of
presented contents.

In this work we present a contribution to the current state of the art in
the user modeling area, namely we focus on creation and maintenance of the
user model. We propose three novel methods to acqusition and maintenance
of the user characteristics in the user model. The method is based on gener-
ating questions to be used for user model updates. Particular questions are
generated according to the analyzed properties of the information concepts
that are the subject of the observed application domain. The entire process
of asking questions is driven by user-defined rules. The second method based
on the content analysis assumes that comparing properties of documents,
which were found interesting for a user, can be a good source for discover-
ing information about user’s interests. Introducing similarity computed for
individual properties allows employment of semantics from the ontology rep-
resentation. We use ontology structure and different similarity metrics to
compute similarity between instances of ontological concepts. Moreover, in
this methodology we impute reasons that might have caused user’s interest
in the content. The last method is based on spreading activation. If there
are connections between information concepts (e.g., learning objects in an
educational application) of the domain model user’s characteristics can be
utilized to extend and extrapolate beyond the known characteristics, even for
concepts that have not been visited yet. In such a way, more accurate and
responsive information retrieval capabilities for the user become available.

The granularity of the methods’ description being presented differs from
one to another. The method based on the content analysis is described
more in details since it is an individual work of the author of the thesis.
The remaining methods were proposed and verified in cooperation with his
master students as a part of their master thesis under his tutoring, therefore,
these reflect a bit lower granularity in the description.

5

The proposed methods were evaluated by software tools within research
projects aimed at job offers (project NAZOU1), digital libraries (project
MAPEKUS2) and learning programming domains (project PeWePro3) that
have been conducted successfully at the Institute of Informatics and Software
Engineering, Faculty of Informatics and Information Technologies at Slovak
University of Technology in Bratislava in the period of 2004–2008.

1NAZOU — Tools for acquisition, organization and maintenance of knowledge in an envi-
ronment of heterogeneous information resources, http://nazou.fiit.stuba.sk

2MAPEKUS — Modeling and acquisition, processing and employing knowledge about user
activities in the Internet hyperspace, http://mapekus.fiit.stuba.sk

3PeWePro — Adaptive web-based portal for learning programming,
http://pewepro.fiit.stuba.sk

http://nazou.fiit.stuba.sk
http://mapekus.fiit.stuba.sk
http://pewepro.fiit.stuba.sk

Chapter 2

Thesis objectives

The personalization process we deal with is based on the user model. The
user model contains identifying characteristics that represent a real user.
The more characteristics about the user are available, the more accurate
personalization can be provided. However, there is one more aspect which
must be considered — user characteristics’ currency. The user changes (e.g.,
gains new knowledge or gets more experienced) over time, therefore, the
user model must always reflect these changes to maintain effectiveness in
enhancing the personalization.

The field of initial personal information gathering is known as acquisition
(i.e., the user model is populated with new characteristics). The ongoing
gathering of user information is termed maintenance (i.e., existing charac-
teristics are kept up to date) of user characteristics, which is necessary to
provide a dynamic and expanding knowledge base for further personaliza-
tion. There are several methods (e.g., implicit or explicit feedback) that can
be used.

In our work we propose novel approaches to automatic acquisition and
maintenance of the user characteristics that employ semantics provided by
ontological representation. The main objectives of this work are following:

− A typical approach to acquiring user characteristics is explicit feedback
where a user is asked a question aimed at a particular characteristic.
We assume that questions can be generated automatically according to
the concepts in the domain model. Our goal is to propose a method of
generating questions to be used for acquiring and maintenance of user
characteristics for the user model.

− We assume that comparing properties of documents, which users found
interesting, leads to discovery of information about users’ interests. The

7

8 2 Thesis objectives

analysis of the content presented to users is a suitable source of infor-
mation for personalized applications. Our goal is to propose a method
that uses content analysis (particularly similarity estimation) to deter-
mine information suitable for estimation of user characteristics for the
user model.

− In many information spaces there are well-defined connections between
information concepts (e.g., learning objects in an educational applica-
tion) of the domain model. We assume that, if such connections are
available, a user’s characteristics can be changed for the concepts, even
if they have not been visited yet by the user. Our goal is to propose
a method for maintenance of user characteristics in the user model
based on relationships among concepts in the domain model.

− Experimental evaluation of the proposed methods includes development
of software tools for the particular methods. Our goal is an evaluation
of the proposed methods with regard to their domain independency.

This work is organized in 8 sections. Section 3 is presented as the basis
and necessary background about the Adaptive and Semantic Web which rep-
resent a context we utilize heavily in this work. Section 4 describes main
approaches and problems related to the user modeling field with the focus on
acquisition and maintenance of user characteristics. In following sections are
described novel methods aimed at acquisition and/or maintenance of user
characteristics based on:

− generating questions according to the domain ontology concepts (Sec-
tion 5);

− analyzing similar and different aspects of the documents presented to
a user (Section 6); and

− spreading activation (Section 7).

Finally, Section 8 contains our concluding remarks.

Part II

Related Work
and

State of the Art

9

Chapter 3

Adaptive Semantic Web

The amount of available information in large information spaces (e.g., the
Web) is continuously growing at what appears to be almost an exponential
rate. Besides many well-known advantages of this expanding information
resource there are some features, which cause the end-user problems and can
not be underestimated. As a minimum we call attention to situations when
the user is overloaded by the huge amount of the information, or can get lost
in the information space, or is directed toward content he/she does not want
to see, etc.

A way to improve efficiency in information acquisition is to offer a person-
alized approach. Improved efficiency can be achieved by employing a person-
alization based on user’s particularities aimed at adaptation of the content,
layout or navigation in the information sources (i.e., a hypermedia informa-
tion space where information chunks are interconnected by links). This makes
available to the information sources a new feature — personalization and the
user model is its necessary element. An information source is considered as
adaptive (e.g., the Adaptive Web), if it is able to dynamically adapt itself
using a user model which reflects some features of the real user [20]. There
is a slight difference between the terms adaptation and personalization.

Definition 3.1 The adaptation in an adaptive application is a modification
of content, style of presentation and navigation (e.g., to changing environ-
ment), whereas the personalization is an adaptation that is provided to the
particular user [14].

Presently, most of the available information in the Web is provided in a form
primarily suitable for human beings, where the choice of its representation
and presentation is up to individual information providers. Obviously, infor-
mation representation is not uniform for all providers, which causes problems

11

12 3 Adaptive Semantic Web

for heterogeneous applications using various information sources. Therefore,
the next stage in improving efficiency of information processing is adding
semantics to the content (e.g., the Semantic Web).

There is another stage that relates to the problems which current in-
formation sources experience — social relationships between the users are
employed to provide improved efficiency in the information processing (e.g.,
the Social Web), but this approach is beyond the scope of this work.

3.1 Models of adaptive web-based applications

In adaptive information sources, there are two terms used very often — adap-
tivity and adaptability . The meanings of these two terms are often confused
or substituted. A common feature for both terms is cooperation with the
user. However, in an adaptive information source a user’s behavior needs
to be observed to obtain necessary information for personalization. On the
other hand, in an adaptable information source, the user’s action is required,
e.g. setting up properties. These are not mutually exclusive concepts since
both approaches can be combined. For the purposes of this work, if there are
at least some features, which accomplish automatic personalization, we con-
sider such a source as adaptive [14]. Basically, adaptive applications consist
of four main parts:

− domain model, which represents the scope for which the application is
designed to be performed;

− user model, where all the actual user’s characteristics, which are nec-
essary for adaptation, are stored;

− adaptation model, which specifies a method for the adaptation to be
accomplished. It is often recognized as being interwoven with the do-
main model. Typically, it is defined as a set of rules that impacts the
appearance of the presentation, as well as it also impacts and updates
the user model.

− navigation model, which is based on the used domain model and de-
scribes user’s possible moves among the concepts within the informa-
tion space [33].

Domain model contains concepts and their relationships. In the field of
adaptive applications is the concept defined as follows [14]:

3.1 Models of adaptive web-based applications 13

Definition 3.2 The concept represents integrated parts of an information
space in adaptive applications. The concept can be atomic or a composite of
other concepts. The concept or a set of the concepts is presented to the user
usually as a web page in adaptive web-based applications.

Since the purpose of the adaptive applications is to provide personalization,
the user model is the most important part. There are more definitions of the
user model which differ according to the way the model is used. We use the
following definition of the user model [50]:

Definition 3.3 The user model represents beliefs about the user that include
preferences, knowledge and attributes for a particular domain.

We use the common term user characteristics to describe preferences, knowl-
edge, attributes and other identifying features that are included in the user
model. The user model can be realized as:

− overlay model , where all the concepts from the domain model have its
own copy in the user model,

− stereotype model , where users are organized in groups and the same
adaptation is provided for any group member. We do not consider
this as a personalization to an individual user, but personalization to
a group.

Sometimes we also take into account environment where the user works [14].
Information about user’s environment should not be neglected, if available.
For instance, if we know that the user speaks only one language, we should
present any information content in this language wherever possible. Another
example of recognition of a user’s environment is presenting relevant infor-
mation based on time criteria [15]. Also the user’s location or their platform
might be important for adaptation [22]. The user’s environment together
with the user model is called the context model. In particular application
domains other models can also be constructed with regard to the purpose,
e.g. goal model and teaching model in educational domain [29].

Adaptation can be provided according to the context when the same
content is presented to all users (e.g., based on place, time) or according to
the user’s particularities. In applications, where the adaption is based on the
user’s particularities, the user model is considered as their most important
part.

Adaptation in the web-based applications occurs on three levels, namely
adaptation of the content, presentation or navigation:

14 3 Adaptive Semantic Web

− The content consists of the information fragments where an information
fragment is related to one or more concepts. Adaptation of the content
influences which information fragments are presented to the user.

− Adaptation of the presentation defines the appearance of the content,
e.g. layout of the content, location of the navigation bar.

− Adaptation of the navigation influences the order of the web pages that
are presented. It is important because the user does not have to see all
information, but should insure that vital content is not missed.

Several methods were proposed to accomplish the adaptation. Adaptation
techniques refer to methods of providing adaptation within existing adaptive
hypermedia applications and adaptation methods are defined as generaliza-
tions of existing adaptation techniques [20].

In Brusilovsky’s works [20, 22] we find techniques for adaptation divided
in two groups. The first group aggregates techniques related to the adap-
tation of the presentation (including content). The second group contains
techniques for adaptation of the navigation (see Figure 3.1).

Adaptive
hypermedia
technologies

Adaptive
navigation

support

Adaptive
presentation

Inserting/
removing
fragments

Dimming
fragments

Sorting
fragments

Adaptive
multimedia

presentation

Adaptive text
presentation

Adaptation of
modality

Direct guidance

Adaptive link
sorting

Adaptive link
hiding

Adaptive link
annotation

Adaptive link
generation

Map adaptation

Natural
language

adaptation

Canned text
adaptation

Hiding

Disabling

Removal

Altering
fragments

Stretchtext

Figure 3.1: Taxonomy of adaptive hypermedia technologies [22].

3.1 Models of adaptive web-based applications 15

A detailed description of these techniques is beyond the scope of this
work and is provided in [20, 22]. For the content adaptation Brusilovsky
recognizes and utilizes methods like conditional content, alternative content,
or sorting of the content. It is possible to realize these methods by using
various techniques, namely inserting, removing, altering, sorting, dimming
fragments and stretchtext.

For the presentation, methods such as local or global guidance, local orien-
tation support, global orientation support or managing personalized views are
available. These methods can be realized by the following techniques: sort-
ing links, rule-based hiding links, annotation links, etc. Moreover, to point
out the adaptation of the navigation we briefly mention techniques related
to recommendation based on group relevancy, i.e. social navigation, collab-
orative and content-based filtering. All these techniques exploit a fact that
the user is a member of a group and the group reflects some features that
are common for most of the group members. With regard to this aspect we
can recommend a possible navigation to the individual user.

In this work we focus on adaptation based on the user model (i.e., person-
alization) so it is important to note that the user model must be also adapted
to be continually up to date and to provide proper information about the user
for further personalization. This process is depicted in Figure 3.2.

Data
about user

User
modeling

Adaptation

Adaptation effect

collects

processes

processes

User model

Adaptive
 web-based
application

Figure 3.2: User model life cycle according to [20].

An adaptive application collects information about the user to be used
for creation of the user model. Afterwards, the populated user model can
also be employed in the adaptation. The process has a cyclic and iterative
nature, as adaptive applications continuously acquire new data about the user
(influenced by already performed adaptation and populated user model) and
continuously refines the user model to better reflect reality and to provide
a better source for personalization.

16 3 Adaptive Semantic Web

3.2 Adding semantics to adaptive applications

Adapting web-based applications to a user has brought an important ele-
ment to the Web environment — personalization. The personalization helps
to reduce existing problems on the Web and allows the user to work more
effectively with the information that is presented.

The Web, at its current state of evolution, has become successful very
rapidly. The reasons for this success include [39]:

− simplicity of HTML language,

− immediate feedback after HTML page had been designed,

− additional benefits, because HTML pages are not used only to present
information, but also as a mean of discussion or documentation for
people participating in projects,

− low critical mass of people needed to raise their interest to become
involved.

It is important to note that even when a content presented to the user is per-
sonalized, it is still suitable only for a human because it is designed for use
by humans. One has to routinely make additional efforts to make acquired
information useful. This is significant especially in the case when the user is
initially looking for information. After constructing a query, which can be
time consuming, and for people not computer-literate is a very complicated
action, the user gets a list, which is assembled based on text analysis pro-
cessing (a fulltext comparison between query and data stored in databases).

To illustrate this situation, let us have a user who wants to find a job
position for a programmer, thus he/she specifies “job” and “programmer”
as keywords. The result acquired by a keyword-based approach obviously
consists of documents containing given keywords. However, these results
are not limited to job offers, e.g. a document describing benefits related to
programmer’s job in general can appear in results. There is no guarantee
that the list with the results contains links to documents the user has been
looking for and the user has to browse the content of each document to
extract information.

One solution to this problem is to represent the Web content not only in
a form understandable for a human, but also in a form that is easily machine-
understandable. In [6] is the machine-understandable term considered as not
very appropriate, even it is used quite often. This term makes implies that
computers can really understand. Instead, authors of this work are inclined

3.2 Adding semantics to adaptive applications 17

to use the term machine-processable as being more descriptive of the desired
characteristics.

Here emerges Tim Berners-Lee’s vision known as the Semantic Web ini-
tiative [12]. This initiative tries to add semantics to knowledge to make it
processable by automated tools as well as by people.

Probably the easiest way to capture the meaning of the presented con-
tent is provided by metadata (data about data), which can be added to the
presented content. But this solution only partially solves problem related to
the machine processing. A job offer could be described as follows:

<jobOffer>
<position>Java Programmer</position>
<company>IT Solution</company>
<salary>10000</salary>
<startDate>ASAP</startDate>
<contractType>Temporary</contractType>
<region>New York</region>
<advantages>

<benefit>car</benefit>
<benefit>mobile phone</benefit>
<benefit>health care</benefit>

</advantages>
</jobOffer>

However, authors of the web page content can use their own terms to describe
semantics of the presented information, with resulting variation in metadata
descriptive elements which causes problems for heterogeneous applications
using various information sources.

A movement from current state, where information on the Web is in
a natural language, is not easy due to the decentralized origins of the data
and content presented. Therefore, Tim Berners-Lee proposed a transition to
the Semantic Web in steps [12] and as the progress proceeds to the next step
when the prior step or level is fulfilled. These steps are known as the “layer
cake” and are shown in the Figure 3.3.

The two bottom layers (Unicode, URI and XML+NS+XML Schema
layer) make a syntax base for the Semantic Web languages. The Unicode
layer provides a basic scheme for encoding of the international characters sets.
URI is the mean for unique identification and addressing of the resources on
the Web. The XML layer with namespace and schema definitions helps in-
tegrate the Semantic Web definitions with the other XML based standards.
RDF allows writing statements about resources and RDF Schema (based on
RDF) allows building hierarchies from these resources.

18 3 Adaptive Semantic Web

URI

Digital
signature

Ontology vocabulary

Logic

Proof

Trust

RDF + RDFSchema

XML + NS + XMLSchema

Unicode

rules

data

data
selfdescriptive

document

Figure 3.3: The Semantic Web layers [12].

It is recognized in this model that the RDF Schema is still not powerful
enough to meet these semantic needs and more expressive ontology languages
are needed to express more complex relationships. Resident in higher levels
of the model are ontologies with vocabularies and relationships between con-
cepts which make ontologies an appropriate way to represent various models
in the web-based applications. The Logic, Proof and Trust layers are still
being researched.

3.3 Ontology as a mean for metadata
representation

The term ontology originates from philosophy, namely from the study of the
nature of existence. Several ontology definitions have been given so far. We
use Studer’s et al. definition [72], which extends Gruber’s definition [38].

Definition 3.4 An ontology is a formal, explicit specification of a shared
conceptualization.

Denotation of this definition is following:

− formal — ontology should be machine readable,

− explicit — type of concepts used and constraints are defined explicitly,

− shared — ontology is not private, but it is accepted by a group,

− conceptualization — refers to an abstract simplified view of the world,
which is formally represented.

3.3 Ontology as a mean for representation 19

In the ontology we define classes (general things) in the many domains
of interest, instances (particular things), relationships among those things,
properties (and property values) of those things, functions, constrains and
rules involving those things [63]. This gives the ontology much more powerful
expressiveness than the metadata approach has. Another term, which is used
very often along with ontologies, is a concept . When dealing with ontologies
the meaning of the word concept is different as defined in Section 3.1. The
concept is sometimes used in place of class, where classes are a concrete
representation of concepts [43]. Furthermore, the concepts can be organized
hierarchically [32]. An ontological concept is defined as follows [8]:

Definition 3.5 Ontological concept is a set or a class of individual objects
that can have simple properties, often called attributes, which are typically
attached to the corresponding concepts.

A range of models with varying degree of semantic richness and complex-
ity can exist among ontologies [63]. An ontology spectrum which provides
a framework to compare information models in terms of increasing semantic
richness is depicted in Figure 3.4.

weak
semantics

strong
semantics

Is Sub-Classification of

Has Narrowed Meaning Than

Is Subclass Of

Is Disjoint Subclass of
with transitivity property

Relational
Model

Taxonomy
Schema

ER
Thesaurus

Extended ER

Conceptual Model

RDF Schema

XTM

UML
DAML + OIL, OWL

Description Logic
Logical Theory

First Order Logic
Modal Logic

Figure 3.4: The ontology spectrum [63].

20 3 Adaptive Semantic Web

Although an ontology is defined as a shared conceptualization [72], a va-
riety of different ontologies describing the same application domain can ex-
ist. Thus some means of ontology comparison are required for application
and/or data integration. The identification of their common and different
aspects is the subject of research in areas known as ontology mapping , merg-
ing and alignment. Mainly for the purpose of ontology management, several
approaches to comparison of ontology concepts or their instances were devel-
oped. There are several overviews oriented primarily at ontology matching
and related areas [36, 44, 61]. In these approaches the most important point
is to estimate similarity between compared parts.

For illustration, a part of a job offer domain ontology depicting the main
class (i.e., JobOffer) and related properties is shown in Figure 3.5. The
job offer domain ontology was developed as a part of the research project
NAZOU1 [59] where we performed experiments.

TravelingInvolved

Salary
Responsibility

ManagementLevelProfessionClassification

ContractType

BenefitApplyInformation

JobOffer

Organization

JobTerm
Prerequisite

Region

involvesTravelinghasSalary

hasContractType

hasBenefit*
hasApplyInformation

offers*
mediates*

isBasedAt

isPartOf*

consistsOf*

hasResponsibility*

isOfManagementLevel
offersPosition

hasJobTerm*

isOfferedIn*

isOfferedBy

isOfferedVia

hasPrerequisite*

hasDutyLocation*

isDutyLocationOf*

Figure 3.5: JobOffer class in job offer domain ontology.

An example of an instance representing a part of job offer in a job offer
application domain is depicted in Figure 3.6. Rectangles used in Figure 3.6
represent instances of concepts. Every such an instance has its unique iden-
tifier, but we present only its label for clarity (e.g., Salary). Datatype and
object properties are used to assert specific facts about instances. Datatype

1Job offer domain ontology, http://nazou.fiit.stuba.sk/home/?page=ontologies

http://nazou.fiit.stuba.sk/home/?page=ontologies

3.3 Ontology as a mean for representation 21

properties express relations between concept instances and RDF literals and
XML Schema datatypes. Object properties express relations between two
instances. To distinguish between object and datatype properties a dashed
line is used for datatype properties (e.g., maxAmount). JobOffer is the in-
stance identifier which several properties are connected to. For simplicity, we
present only a few of them, and surround multiple properties (e.g., hasPre-
requisity) by a rounded box.

String

Programmer/Analyst

Float
60.0

JobOffer Full timehasJobTerm

hasStartDate

Salary

hasSalary

US Dollar

isInCurrency
minAmount

maxAmount

hour

perPeriod

offersPosition

hasPrerequisite

String

...

hasText

String
Any VB6 and COM
experience is a big plushasText

Float
50.0

hasDutyLocation

Washington, D.C.

VB6 and COM

VBScript and HTML

ASP.NET
Date

2008-05-01

Figure 3.6: Example of an instance representing a part of job offer.

Recently, several approaches have emerged that use ontological represen-
tation to store more complex objects. Since it is up to the ontology engineer
whether a real-world object is conceptualized as a class or an instance (ac-
cording to the purpose of the ontology) to exploit the full power of the on-
tology, it is necessary to use an appropriate representation that is capable to
express all concepts (i.e., general things) we have described above. There are
many languages that were developed to represent ontologies (e.g., DOGMA,
KIF, Ontolingua). The following ontology languages were standardized and
recommend to be used on the Web by W3C2 [56]:

2The World Wide Web Consortium, http://www.w3.org

http://www.w3.org

22 3 Adaptive Semantic Web

− XML provides a surface syntax for structured documents, but imposes
no semantic constraints on the meaning of these documents.

− XML Schema is a language for restricting the structure of XML docu-
ments and also extends XML with datatypes.

− RDF is a data model for objects (“resources”) and relations between
them; provides a simple semantics for this data model, and these data
models can be represented in an XML syntax.

− RDF Schema is a vocabulary for describing properties and classes of
RDF resources, with a semantic specification for generalization hierar-
chies of such properties and classes.

− OWL adds more vocabulary for describing properties and classes, such
as relations between classes (e.g., disjointness), cardinality (e.g., exactly
one), equality, richer typing of properties, characteristics of properties
(e.g., symmetry) and enumerated classes.

Furthermore, OWL language provides three increasingly expressive sublan-
guages and ontology engineers should consider which sublanguage best suits
their needs [56]:

− OWL Lite supports those users primarily needing a classification hier-
archy and simple constraints;

− OWL DL supports those users who want the maximum expressiveness
while retaining computational completeness (all conclusions are guar-
anteed to be computable) and decidability (all computations will finish
in finite time). OWL DL is so named due to its correspondence with
description logics; and

− OWL Full is meant for users who want maximum expressiveness and
the syntactic freedom of RDF with no computational guarantees (e.g.,
a class can be treated simultaneously as a collection of individuals and
as an individual in its own right).

In adaptive web-based applications, the ontologies can be used as a mean to
represent models. We focus particularly on the user model and also on do-
main model which it is interconnected with. In our work, where documents
or their parts are represented via (hierarchically organized) ontological con-
cepts, which describe a set of real objects (i.e., concept instances), we use the
OWL Web Ontology Language for ontology representation and particularly
its DL sublanguage.

Chapter 4

User modeling

User modeling is a natural consequence of the societal need for personaliza-
tion. Approaches to the user modeling employ methods from different areas.
The roots of the user model techniques are related to the Intelligent Tutoring
Systems. An Intelligent Tutoring System (ITS) is a computer based program
that presents educational materials in a flexible and personalized way [21].
ITS consists of three main parts: knowledge about the domain or what to
teach, a learner specifies who is to be taught and a teacher strategy defines
how to teach. If we look at ITS from the user modeling perspective the
learner who represents the user of the ITS is the most important for us. An
application observes students’ work, tailoring feedback and providing hints
along the way. By collecting information on a particular student’s perfor-
mance, the application can make inferences about strengths and weaknesses,
and can suggest additional work.

The probability that the application’s general interface and behavior de-
signed as “one size for all” would be effective for all categories of users is
rather low, thus adaptation (personalization) to a particular user is desired.
In Kobsa’s work we can find the term user modeling shell systems [52, 53]
or abbreviated shell system or shell . This term describes the software tools
that provide the representation of assumption about one or more user char-
acteristics of an individual user or common characteristics of user belonging
to a group, records of the user’s behavior, etc.

4.1 User characteristics

A user model represents various user characteristics, which can be used to
adapt the content , presentation or navigation of the informational materials
presented. A content of the user model is described with variety of terms,

23

24 4 User modeling

namely attributes, features, characteristics or properties are used frequently.
In this work we use the term characteristic. Based on the differences that
are not exclusively of terminology, it is obvious that the user modeling field
needs to be standardized. A first attempt is known as User Modeling Meta-
Ontology [79].

There are several approaches that utilize classified characteristics in the
user model. One of the approaches is distinguishing the user characteristics
with regard to how the characteristics change [60]:

1. permanent characteristics, which are independent from experience with
the particular application (e.g., interests, attitudes, personality, skills,
knowledge, abilities and preferences) and do not vary dynamically.

2. variable characteristics, which are divided into characteristics, which:

(a) do not depend on using the application and can be changed inde-
pendently, e.g. gender, age,

(b) changes as the application is being used, e.g. working with the
application raises the user’s experience level.

A similar approach, taking into account how often are the user characteristics
changed, divides them into [46]:

− static group, which covers characteristics that has been set once and do
not change throughout the lifetime of the user model or are changed
rarely (e.g., name, gender, date of birth).

− dynamic group, which characteristics are usually related to knowledge,
goals, etc. and express parts of the user model where changes are made
more often (e.g., user’s home address). We assume, in this example,
that people are moving from one place to the other one and merely
seldom they live on the same address for the entire life.

These two groups also differ in the manner with which the information, which
is stored in these characteristics, is acquired. The static characteristics are
mostly asked in some questionnaire (e.g., gender, date of birth) whereas the
dynamic characteristics are acquired by observing user’s behavior throughout
working with the application. For instance, we can record information about
the job offers that has user previously visited. Observing user’s activity can
be a good source for future inferences about user’s preferences or interests.

The domain dependency is another important distinguishing criteria [46].
It allows for dividing the user model into:

4.1 User characteristics 25

− domain-dependent (or domain-specific) part, which contains character-
istics that are closely related to the application domain (e.g., preferred
wage per month or per hour in the case of labor market domain),

− domain-independent part, which contains characteristics that are not
related to the application domain (e.g., age or gender).

Detaching the domain-independent part of the user model allows for the
building of a common user model that could be reusable in different and di-
verse applications. An example of dividing a user model in domain-indepen-
dent and domain-specific part is shown in Figure 4.1.

AttributePreference

hasWeight Float

relatesToAttribute Instance GenericAttribute

CrispCharacteristic

hasCrispValue String*

isa

FuzzyCharacteristic

hasFuzzySet Instance FuzzySet

isa

FuzzyfiedCharacteristic

hasFuzzyfiedValue Instance* FuzzyfiedValue

isa

UserCharacteristic

hasTimeStamp String

hasCountOfUpdates Integer

hasSource Instance UMSource

contributesTo Instance* Goal

hasRelevance Instance c:LevelOrdering

hasConfidence Instance c:LevelOrdering

isa

GenericUserCharacteristic

relatesTo Instance

isa

RuleCharacteristic

hasResultValue Float

hasClause Instance* Clause

isa

User

livesInRegionOfSize Integer

hasMaxAge Integer

hasChild Boolean

hasMinAge Integer

includes Instance* DomainSpecificUser

hasCharacteristic Instance* UserCharacteristic

hasCharacteristic*

DomainSpecificUser

includes*

Figure 4.1: Domain-independent user model.

For some domain-dependent characteristics we can use the term prefer-
ence and interest . The term preference expresses a user’s expectations or
desired outcomes for the application domain (e.g., the user prefers rather
to work as a human resources manager than a technical support specialist).
The term interest is not as conscious or focused as the preference. Interest
expresses attractiveness about someone or something to the user [37] and
generally is less accurate (e.g., one knows that is interested in the work with

26 4 User modeling

the people and likes to manage them, but does not know if he/she wants to
work as a human resources manager or consultant).

As an example of utilizing a user’s characteristics in the process of adap-
tation, let us assume that a characteristic in the user model describes the
minimum acceptable salary per month for a specific user. If there is informa-
tion known that the user is not interested in job offers where the offered salary
is lower (or much lower considering the fuzzy nature of the characteristic)
than user’s expected salary, offers that do not fulfill this condition will not
be presented. The adaptive application modifies and configures information
presented on behalf of the user with the help of the user model.

Another case where the user model content can be used, is the interpre-
tation of the user’s input [49] (which can be ambiguous, incomplete, with
errors, etc.) and the personalization of the outputs (e.g., sorting of the re-
sults, number of results per page, font, colors). The more relevant charac-
teristics describing the user that are included in the user model, the more
accurate and useful is the personalization provided by the adaptive applica-
tion. Knowledge of specialists who work in the particular application domain
for which the user model is designed is invaluable in the process of designing
user models. Their experiences and understanding of the content help to
construct the user model reflecting the real user as accurately as possible.

4.2 Approaches to user modeling

There are several approaches that can be employed in the user modeling
process. Some of them can be used as standalone techniques for constructing
user model even though a combination of these techniques is also possible.
In this section we discuss approaches (e.g., content-based and collaborative
filtering, stereotype model, overlay model) which are the most commonly
used and look at user modeling from different perspectives.

Content-based and collaborative filtering

Information filtering attempts to selectively reduce the potential overwhelm-
ing amount of the information that the user receives. Special types of the
information filtering are content-based and collaborative filtering.

This approach evaluates the content of a document, which has been found
interesting by the user and similar contents are selected with regard to the
correlations among them. Content-based filtering methods depend on three
main factors: the item’s content, ratings given by the user, and a filtering
algorithm [73]. Content-based filtering can exploit information only from the

4.2 Approaches to user modeling 27

document’s contents (e.g., words, phrases). Algorithms for content-based
filtering need large amount of the information related to the user’s behavior.

The collaborative approach, or sometimes called social filtering, assumes
that users with similar taste will likely prefer similar things. Therefore, users
are divided into groups by their interests. Recommendations are provided
to the particular user with regard to the ratings acquired from other users
that had similar preferences in the past. Eliciting explicit feedback (rating
about things) from many users is thus necessary to get these preferences and
interests.

The difference between content-based and collaborative filtering is that
content-based filtering is based on finding a match between content and the
user’s preference profile whereas collaborative filtering finds match between
people with similar preferences [76]. It is important to note that these ap-
proaches are not mutually exclusive and both approaches can be used in
combination in user model development.

Stereotype model

The commonly used current approach in adaptive web-based applications
is using stereotype and overlay user model or in some cases a combination
approach that exploits advantages of both models. Complex research about
stereotypes has been done by Elaine Rich [70]:

Definition 4.1 The stereotype is a collection of frequently occurring char-
acteristics of users.

User’s knowledge background about the application domain differs from one
user to another. The stereotype approach also takes into account that aspect.
Users are associated with one or more stereotypes that commonly reflect
a user’s knowledge [46], social background, computer experience etc. These
stereotypes can be ordered hierarchically [60] and characteristics are inherited
from the superior stereotypes in the hierarchy. A user associated with the
stereotype will inherit all stereotype characteristics automatically.

As an example we can consider three user stereotypes related to the user’s
education: elementary, secondary and higher. Let us have a user who has
achieved higher (university) education — he/she is a specialist in the grad-
uated field of science, is able to work independently, invent new solutions
and bring them into the real life, etc. In the user model we will apply all
these characteristics, even though a particular user does not have to cover
all of them. Based on these characteristics we offer higher level job position
to the user with the university education, e.g. positions like project manager

28 4 User modeling

or pharmaceutical researcher. On the other hand, we do not offer positions
like driver or painter that we would analytically associate with an offer to
the user with a lesser elementary or secondary education.

Kobsa identified three important tasks for designers which need to be
fulfilled to properly identify stereotypes [52]:

− User subgroup identification based upon similar characteristics that are
relevant for designed system.

− Identification of a small number of key characteristics that allows as-
sociation of a user to the particular subgroup.

− Formalization of the user group characteristics in an appropriate rep-
resentation system is necessary.

Designers play an important role in building user stereotypes. They have to
identify which user’s characteristics should be included into the stereotype.
Kay distinguishes handcrafted and empirically-based approaches to building
stereotypes [48]. A designer builds a handcrafted stereotype based on his/her
observation of the group. An empirically-based approach collects data about
the users’ actions to build stereotype. The designer also defines when the
stereotype is triggered and how it will interact with the application.

Essential elements of a stereotype are triggers, inferences and retraction
facility [49]. A trigger activates the stereotype, i.e. upon information ac-
quired from user one or more of available stereotypes would be activated.
Seldom can this information be acquired by observing the user for short in-
teraction period of the time [48]. After assigning the stereotype inferences
about the user can be developed. The user model is thus extended by inferred
characteristics. In the case when characteristics obtained in the stereotype
do not appear to reflect conformance to the initial stereotype assumptions
by the user the retraction facility deactivates it.

A different approach to the stereotype user model is when the model con-
sists of sets of pairs that assigns only the value “true” (i.e., if the user belongs
to the stereotype) and “false” (i.e., in the opposite case). A variation on this
approach can be the use of a value that reflects probability of belonging to
that stereotype as well [20].

The stereotype model is prone to inaccuracy due to the need for heavy
reliance on inferences, which is considered as its main drawback [52]. Even for
a stereotype that has been selected and applied correctly, some inappropriate
characteristics can be inferred for particular user. Here, it is important to
emphasize that in this case the personalization is not performed to the benefit

4.2 Approaches to user modeling 29

of particular user, but to the selected stereotype in a collective sense. This
statement is supported by another definition of the stereotype [47]:

Definition 4.2 The stereotype is a statistically based reasoning about a group
of people.

A clear advantage of using stereotypes is visible when initializing a user
model by first use of an application (know as cold start problem). The user
who has provided some but not complete identifying information [26] to the
adaptive application can be associated with a particular stereotype and some
characteristics can then be inferred.

Overlay model

The main idea of the overlay model is that a user’s knowledge of the subject
is relevant subset of the domain knowledge and the overlay user model is
an overlay over the domain model [20, 46, 48]. It usually uses the same
representation as the domain model. An overlay model assumes an instance
of itself for each user. This makes a basis for personalization of particular
user in contrast to stereotypes.

Domain model in adaptive web-based applications is usually represented
through concepts and their relationships. Any domain concept has a corre-
sponding value in the overlay model which represents the user’s knowledge
of the concept. Estimation of the concept can be a binary, qualitative or
quantitative value [20].

An open source general-purpose adaptive hypermedia application, AHA!
(Adaptive Hypermedia for All), uses the overlay user model approach. The
user model consists of the set of concepts with a corresponding value [30].
Apart from additional personal concepts stored in the user model the overlay
user model in AHA! incorporates any concepts from the domain model. An
appropriate value is assigned to the concept by the application. This value
expresses individual user’s knowledge level of this concept.

A special kind of overlay model is a differential user model [48]. The
differential user model does not reflect the entire domain knowledge, as it
is represented in the domain model, but only a part of it. This part is
only the subset which the user might be interested in. The overlay model
which contains only a real subset of domain knowledge and omits any incor-
rect knowledge is called strict overlay model [46]. On the other hand, the
user model that includes also incorrect knowledge is called perturbation user
model [27].

30 4 User modeling

The main drawback of this approach is the necessity of initialization of the
overlay model. When an application is used by a user for the first time there
is no information about user’s knowledge for the particular domain concept.
An often used approach is a quantitative estimation of the initial value to
be set at 0, or to some mean value, e.g. 50. This approach is usually used
by educational adaptive applications. The way to overcome this problem is
a combination of an overlay user model with a stereotype user model [78].

Shared model

An important issue related to effective usage of the user’s characteristics
representation is need for sharing the user model among several applications.
This brings several advantages as shown in [10, 11, 16], e.g. importing and
integrating data collected by other applications. An application during initial
use can thus utilize the initialized data from other applications (i.e., a solution
to cold start problem) what may avoid the need for the user to type the same
information over again in every application. Thus, it is clear that the key
advantage of the shared user model is an availability of user’s characteristics
discovered by other applications. Such information can be mutually shared
among applications (e.g., over services).

A noticeable advantage of shared user model is that information is logi-
cally stored at one place (from technical point of view it can be replicated).
This eliminates the redundancy of data storage and updates and simplifies
the maintenance of the model. All changes need to be performed only once
and then made available to all the relevant applications for a user. Moreover,
when characteristics from various information domains are available at one
place, the more complex user models can be built based on the more exten-
sive and diverse potential information gathering possible through multiple,
different applications.

There are also inherent drawbacks with sharing a user model. Each ap-
plication uses its own (different) representations, terminology, granularity of
stored information, requirements for higher or lower safety, etc. A promis-
ing approach for solving some of the mentioned problems is employment of
mediating services for important user characteristics information from the
various sources. Another problem arises when the applications using the
shared user model evaluate some user’s characteristics differently or reach
different, conflicting conclusions about a user’s interests or capabilities.

Many applications define user model as a single-unit model. In spite of
this fact many models have been developed independently although through
close examination we could find at least a small number of common char-

4.3 User model representation 31

acteristics. Designing user model as an autonomous single-unit might cause
reusability problems. Therefore, decomposition of the user model into the
relevant parts seems to be the appropriate approach. In this approach it is
necessary to identify characteristics which should belong to individual parts.
This leads us to designing a general user model constructed from domain-
independent characteristics, which reflect everything what is suitable for most
of the users in different applications, and then address the remainder of the
characteristics (i.e., domain-dependent).

To conclude, the key advantage of the shared user model is the availabil-
ity of user characteristics discovered by multiple systems (e.g., in the Web
environment) since user characteristics acquisition is considered to be the
bottleneck of optimal personalization.

4.3 User model representation

There are several approaches to representing and storing a user model in
web-based applications [2]. For user modeling it is important to analyze to
what extent a particular representation is flexible for different kinds of user
characteristics applied in a uniform manner together with the possibility of
reasoning directed to decisions on information content presented to the user.
We do not discuss representations that use proprietary formats as this would
almost totally prevent the sharing and reuse of the user model.

Non-ontological representations

Markedly the most obvious is the use of a relational database to store data
about the user since most applications already use this kind of data storage.
In this case, the user model is represented as a set of database tables and
user characteristics are mapped to attributes in the relational data model
and stored values are assigned to individual user characteristics.

Using a relational database is quite straightforward, offers good perfor-
mance, and several other advantages such as security, distribution ease, data
recovery, etc. that result from good theoretical background of relational
calculus and the maturity of its realization by database management sys-
tems. However, user models of web-based applications often contain semi-
structured data as they use an overlay model, which follows the representa-
tion of the information space with various characteristics defined for concepts
from the domain model. Relational databases are not primarily designed to
express semi-structured data. Moreover, relational databases are not well

32 4 User modeling

suited when frequent changes in data structure need to be performed, which
is often the case in user modeling.

Another frequently used approach in current web-based adaptive appli-
cations is the representation of the user model by an XML based language
using the file system, what results in powerful expressiveness. An example
is the open source general-purpose adaptive web-based system AHA! [30].
The part of the user model which stores information about the user’s name
is defined in the AHA! as follows:

<record>
<key>personal.name</key>
<value>John Smith</value>
<firsttimeupdated>false</firsttimeupdated>

</record>

The performance of this solution is limited by the performance of the used
file system (i.e., it is effective for user models with few instances and a rich
structure of user characteristics). Reusability and sharing is better than
with the database approach, thanks to the platform independence of XML,
while using XML has the advantage that it can be used directly in the Web
environment. However, XML as a meta-language, defines only the general
syntax without providing for formally defined semantics, which leads to dif-
ficulties when reasoning is used. Moreover, everyone can invent personalized
names for tags; some developers store attributes as tags; some developers
and applications use the attributes of tags defined by XML syntax.

Both of the above mentioned approaches offer only a way to describe
user characteristics and do not offer any added value from the user modeling
perspective. An ontology-based approach to user modeling offers a way to
move user modeling from the low-level description of user characteristics to
a higher level with additional possibilities.

Representing user model by ontology

The term ontology includes a whole range of various models with a wide
variety of semantic richness (see Figure 3.4). In this work we focus on rep-
resenting the ontology by RDF1/OWL2 formalisms. An approach based on
RDF and its extension OWL takes the previously mentioned XML represen-
tation (syntax) and eliminates its disadvantage by defining a vocabulary for

1Resource Description Framework, http://www.w3.org/RDF/
2Web Ontology Language, http://www.w3.org/2004/OWL/

http://www.w3.org/RDF/
http://www.w3.org/2004/OWL/

4.3 User model representation 33

describing properties and classes. OWL serves as a common language for
automated reasoning about the content for the vision of the Semantic Web.

For illustration, shown below is a fragment representing a user’s name
and working experience that is a part of the ontology-based user model in
the job offer domain:

<rdf:Description rdf:about="#name">
<rdfs:label xml:lang="en">name</rdfs:label>
<rdf:type rdf:resource=
"http://www.w3.org/2002/07/owl#DatatypeProperty"/>

<rdfs:domain rdf:resource="#User"/>
<rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</rdf:Description>
<rdf:Description rdf:about="#hasExperience">

<rdfs:label xml:lang="en">has working experience</rdfs:label>
<rdfs:domain rdf:resource="#User"/>
<rdfs:range rdf:resource="http://www.fiit.sk/

classification#ExperienceClassification"/>
<rdf:type

rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>
</rdf:Description>

The characteristics are defined within rdf:Description elements, i.e. user’s
name and his/her working experience (hasExperience). The name character-
istic is represented as a datatype property in the ontology (rdf:type element)
and its expected value is a string. The hasExperience characteristic is repre-
sented as an object property and its value is an instance of the Experience-
Classification class.

The advantages leading to using ontologies for user modeling come from
the fundamentals of this formalism. Ontologies provide a common under-
standing of the domain to facilitate reuse and harmonization of different
terminologies [50]. These characteristics support reasoning, which is consid-
ered as an important contribution to the ontology-based models. Once user
characteristics are in ontological representation, the ontology and its rela-
tions, conditions and restrictions provide the basis for inferring additional
user characteristics. For example, considering a user who is a programmer
and works for a company that develops web-based applications using Java
technologies we can infer that he/she is skillful in Java technologies.

By creating an ontology-based user model and deriving it from the do-
main ontology, we increase the probability that user characteristics will be
shared among a range of systems of the same domain (especially on the Web,

34 4 User modeling

where most ontologies are currently represented in OWL). We consider the
sharing of user models as one of main advantages of using ontologies for user
modeling. One of the most obvious advantages of a shared model is that one
application can use the initialized data for personalization from other appli-
cations avoiding the requirement for the user entering the same information
into every application (e.g., name, local settings).

As an example, let us consider a web-based application aimed at job of-
fer acquisition. Let us project an example user whose education is in the
field of information technologies with deep knowledge of the object-oriented
paradigm of programming. As the user searches for a job, he/she visits an-
other adaptive job offer application. Since the user model is shared between
applications both applications have an access to information about user’s ed-
ucation and automatically display offers seeking specialists on object-oriented
design at the top of the results list.

Some authors believe that the solution to syntactical and structural dif-
ferences between user models which interfere with sharing is in the use of
commonly accepted user model ontology [40]. Since we agree that build-
ing common vocabularies is important and useful (we endorse the role of
standards), considering a large distributed information space (e.g., the Web)
we need to make a compromise between enabling diversity and looking for
mappings between various models. The idea of a single commonly accepted
user ontology is simply impossible to achieve in such diverse and distributed
environment.

Certainly, a unified representation by ontologies can move the person-
alization on the Web further and give new possibilities of using user char-
acteristics derived by other applications. Upon consideration of structural
unification, a problem arises when applications using the shared user model
evaluate some user characteristics differently. These characteristics can be
changed constantly as the user accesses applications what can lead to unsuit-
able personalization in all applications using the respective characteristics.
One solution to this problem is to keep track of model’s changes [74]. This
would allow each application to use this tracking as additional information
for personalization.

4.4 Acquisition and maintenance
of user characteristics

We have already mentioned that relevant and up to date characteristics de-
scribing the real user are needed in the user model to perform accurate per-

4.4 Acquisition and maintenance of user characteristics 35

sonalization. Under the acquisition and maintenance of the user character-
istics we understand the following:

Definition 4.3 Acquisition of a user characteristic is the process when the
characteristic is discovered and a value is assigned to it if it is not yet set.

Definition 4.4 Maintenance of a user characteristic means adjusting cur-
rent value of the characteristic to reflect the user at that point in time.

Processing of acquisition and maintenance of characteristics roughly follows
these steps:

1. Sources identification. At this stage we need to identify sources from
which we can extract information for the user model. Sources are
mostly based on intuition and/or experience of the developers [53].
Their prior work and experiences are very valuable sources for the de-
veloping the user model. Designers use experiences and time-consuming
research to identify all the important characteristics that ideally should
be included in the user model. An extremely important part of this re-
search is the communication with specialists in the area from the praxis
which the user model is designed for.

2. Collecting information. There are two basic approaches to collecting
information about the user [26]:

(a) explicit feedback , which is based on asking the user to provide
information (i.e., involving the user is necessary); whereas

(b) implicit feedback exploits information acquired by observing a
user’s behavior and the user is not cognitively aware of the data
collection during the work with the application.

3. Analyzing and extracting information. Information acquired by obser-
vation of the user’s behavior [78] or implicit feedback requires further
processing before it is stored in the user model as a characteristic.

4. Changing the user model. At this stage the user characteristics are
stored in the user model. This process is known as:

(a) initialization if there is no pre-existing characteristic in the user
model; or

(b) actualization (or maintenance) in the case when that characteris-
tic already exists in the user model and only its value is changed.

36 4 User modeling

Acquisition of new user characteristics can be helpful in overcoming the cold
start problem. In the case of overlay user model there is no need to acquire
new characteristics since the user model is filled with characteristics (possibly
with assigned default values) for each respective concept from the application
domain. Afterwards, the process of maintenance is employed to keep these
characteristics up to date. In our proposed approach, feedback-based ap-
proaches are primarily used. Therefore, in following sections we take a closer
look at the cold start problem and incorporating user feedback.

Cold start problem

We have identified two main sources of information to be used in the user
model. Unfortunately, when the user starts using the application for the first
time there is no information about him/her to provide successful personal-
ization. This situation is known as a cold start problem.

When the personalization presented is not as user expects or needs to
effectively use the application, it can deter the user from using the application
further or returning to it in the future. We distinguish [57]:

− new system cold start problem, which is related to the new system where
there is no initial information about any user, i.e. the user who uses
the application for the first time is the first user since the application
has been launched,

− new user cold start problem where the application has been already
running for a while and there are records about the prior users of this
application.

Asking the user questions would seem to be a logical solution to the cold
start problem. However, the user who is presented with too many questions
usually starts feeling bothered and is inclined to select random answers just
to get through it as quickly as possible. Here, we point out how important
it is to design clear and unobtrusive questions.

A partial solution to the problem is the provision of stereotypes where
the user is assigned to the group (stereotype) after he/she has answered only
a few questions. The stereotype reflects common characteristics, which are
applicable for most of the group members. If the stereotype is assigned to
the user, all these characteristics will appear in the user model even though
some of them might not reflect that particular user.

The cold start problem could be also overcome by using default values.
This approach is used very often, especially in educational applications. Most

4.4 Acquisition and maintenance of user characteristics 37

of these type applications are dedicated to a group of students and here we
can assume their previously achieved education level. The knowledge about
the student’s level of the concept is set as an initial value related to the
particular characteristic when the user model is created.

User feedback

User feedback is used to elicit information from the user either implicitly or
explicitly while he/she is working. The common example on explicit feedback
is when the user is asked for an opinion about the presented content. Usually
the user assigns a rating to the visited content from a defined scale. This
evaluation feedback can be used for finding similar content, i.e. if the user
likes some offer and assigns a high rating to it we can suppose that the user
will also like similar ones. By explicit feedback the user can indicate either
positive or negative interaction, e.g. when the user clicks on the button “More
details” indicates a positive interaction or eventually negative interaction by
clicking on the button “Not interested”.

When the user’s work is not interrupted we are talking about implicit
feedback . It requires collecting of evidence and making deductions before it
is allowed to influence and update the user model. For example, a user reads
detailed information about a content only to find it uninteresting or inappli-
cable after knowing all details. Implicit feedback often introduces inference
errors into the user model. Explicit feedback is assigned a higher priority
than implicit feedback because it actively involves the user [26], however im-
plicit feedback is more preferred because it has little or no impact on the
user’s normal work activity [57].

If we focus on web-based applications, the user uses a web browser to
access the content represented as web pages. During browsing the web pages
the user reaches the content, which he/she does not want to read or just wants
to go one or more steps back in the navigation. To accomplish this intent the
user presses the Back button and proceeds to previous page. This provides
very important information, e.g. from the pressing of the Back button we can
infer information about user’s interest in the content that is being presented.
If the user spent enough long time before he pressed Back button we can
further suppose that the presented content is of some level of interest and
perform changes in the user model. By the same measure, a short duration
on a web page with the Back button then being utilized can lead to the
inference that the content was generally uninteresting to the user.

Usually there are limited options to eliciting personal information without
asking. The commonly used approach is a questionnaire where the user has

38 4 User modeling

several closed questions, i.e. prepared answers are provided and the user only
needs to pick one or more presented answers that apply. The number of
questions and the appropriate formulation of the question is very important
to induce the user perform the feedback activities, which are not directly
related to the goal, i.e. to work with the application. In the absence of
easy and non-intrusive feedback tools the user could be prone to choose
random answers or to only to go through the tool quickly without thoughtful
consideration of the answer given. Similarly, in some circumstances the user
does not know the correct answer of the questions (e.g., required knowledge is
not achieved yet) or because of privacy [70] the user tries to avoid answering.

Another resource of information about the user is external sources, such
as structured documents. An example of this type of document could be
a structured curriculum vitae. Here, a specialized one-purpose tool is needed
which is used to extract information from the document and store desired
elements in the user model. The main disadvantage is developing general
tools being capable of extracting information from various sources.

Observing the user’s behavior or navigation in the information space is
another source. The main advantage of this approach is that the user does
not even have to know about it. This way we can find out details about
the content activity, which web pages has the user read, when or what time
has the user spent there, etc. Afterwards, we can infer user characteristics.
Analysis of the user’s behavior is insufficient if it is performed at the end of
the session. It is necessary to do some analysis during the session [7].

At last, we should not forget the psychological aspect of answering ques-
tions. People see themselves in better light than they in fact are. In this
case all the active solicitation effort is useless. Sometimes is better to work
with smaller amount of information than with a larger set that is inaccurate.
Therefore, the conclusions reached are that questionnaires should be unob-
trusive as much as possible, so as to not discourage the user from using the
application and they should be structured to guide the user to provide the
answers honestly and realistically.

Inaccuracies in the user model

Information provided explicitly by the user is considered as the most con-
fident source [47]. The problem emerges when the information about the
user is inferred or is automatically acquired from the observing of the user’s
behavior. Thus, not only values that are assigned to the particular charac-
teristics can be inferred, but also new characteristics. This is especially true
when the stereotype model is used. The user becomes a member of the group

4.5 Open problems 39

even though he/she probably does not have some of the global characteristics
that represent the particular stereotype.

Observing a user’s behavior and following inferring user’s characteristics is
interesting from the researcher point of view, but untrustworthy in the user’s
eyes. Diffidence may cause that user stops using the adaptive application
because there is no user control about what kind of information are stored
and applied in the user model. To avoid the problem with trust in the user
model, the user should have an opportunity to check the content of the user
model through some kind of user-friendly interface [48]. In the user model it
is important to distinguish and also indicate for each characteristic and its
value whether it was acquired directly from the user or it was inferred from
indirect sources.

A special case that may sometimes appear and that causes inaccuracy
in the user model is when the user allows another person to work with the
application on user’s behalf [49]. This will likely case the unsatisfactory
personalization.

4.5 Open problems

We consider the simplification of exchanging user model data between dif-
ferent applications as the major advantage of using ontologies. Separating
the domain-independent part of user characteristics allows building a gen-
eral user model. This kind of the user model can be used in a wide-range of
applications and can simplify sharing the user model.

If we focus on commonly used user models, the main drawback of the
overlay user model is the necessity of its initialization. The way to overcome
this problem is a combination of the overlay user model with the stereotype
user model. However, the stereotype model is prone to inaccuracy due to
the need for heavy reliance on inferences. Even for a stereotype that has
been selected and applied correctly, some inappropriate characteristics can
be inferred for particular user.

Current approaches to acquisition and maintenance of user characteristics
are mostly based on user’s feedback. Although these approaches are much
more automatic than they were in the past in current adaptive applications
there is still a substantial requirement for designer involvement, e.g. defining
rules. These rules are defined for a particular application and usually they
are not transferable to other applications (i.e., reusable).

The main drawback of methods for acquisition and maintenance of user
characteristics is that they are not designed with regard to domain indepen-

40 4 User modeling

dency and reusability. Furthermore, there is not enough attention paid to
these methods, in the user modeling field, since the way the characteristics
are changed in the user model is usually only supported by these methods,
i.e. it is not directly visible on the application’s presentation layer.

An effective user model, as a result of the user modeling process, is the
critical outcome element if we want to achieve an efficient and improved
personalized approach to the information content presentation. We have
identified several research areas where open problems related to the user
modeling exist:

− User modeling in an open information space. Most adaptive applica-
tions are intended to be used in a closed information space. Modeling
the user when the application domain is closed and well-known is much
easier. An example user model developed in a closed information space
could serve similar adaptive applications for educational purposes that
are structured in a similar manner in other open information spaces. If
we have the well-defined information space (e.g., defined by an ontol-
ogy) we can use a mapping between the existing user ontology and the
domain ontology to build the new user model automatically.

− Shared user model. Dividing the user model into domain-independent
and domain-specific parts is a promising approach to reuse available
information among adaptive applications. To achieve this goal an on-
tological representation of the user model can be employed. Further-
more, there is a problem of finding a suitable way of mapping between
the user model and domain models of applications.

− Dynamics of the user model. The values assigned to the characteristics
in the user model change as the characteristics change during the life-
time of the model. There is a need to study and identify which factors
cause the most significant changes in the user model and to propose
adequate methods that will reflect these dynamic changes in the user
model.

− User model in a social environment. The need of people to create so-
cial groups with regard to their interests in real life causes applications
based on social aspect to become more popular. Here, a wide vari-
ety of information about a particular user can be discovered if one’s
relationships to other users are researched and analyzed.

− Acquisition and maintenance of the user model. To provide a successful
personalization a user model populated with the characteristics that are

4.5 Open problems 41

up to date is desired. A variety of approaches can be used, e.g. implicit
and explicit feedback. It is important to note that there are other
sources of information that can be used to extract information for the
user model (e.g., logs). In our work we focus primarily on methods
aimed at acquisition of the information to be used for the user model
and its maintenance.

In this work we propose a set of novel methods for acquisition and mainte-
nance of user characteristics in the user model. These approaches are de-
signed with regard to reusability. We designed these methods with regard to
their domain independency and also with the aim to be automatic as much
as possible.

Part III

Methods for Acquisition
and Maintenance
of User Model

43

Chapter 5

Acquisition of user characteristics
based on questions

The method presented in this chapter was proposed in coopera-
tion with Tomáš Klempa as a part of his master thesis supervised
by the author of this work.

In the adaptive applications, if the overlay user model is employed for per-
sonalization purposes, there is a copy of each concept from the domain model
stored in the user model. Each such a record about the concept in the user
model needs to be initialized before it is used and later needs to be main-
tained updated. Traditional approaches to initialization and maintenance
of the user model commonly consider a closed information space and are
proposed for the particular application. Dynamics of changes of the infor-
mation space makes commonly used approaches unsuitable in Semantic Web
applications. The limitations of traditional solutions (e.g., their domain de-
pendency) raise a need for novel methods of initialization and maintenance
of the user model.

A novel method described in this chapter is suitable not only for ac-
quisition of user characteristics but also their maintenance is possible as
well. It employs an explicit approach — dynamically generated questions
and answers. Motivation for the method was the M-PIRO project that uses
meta-data to generate text in natural language [4]. In the course of this
project a tool was developed that is capable of generating texts according to
additional information about entities stored in the database.

In [55] there is an approach to planning utterances in natural language
that can dynamically use context information about the environment in
which a dialog is located. Similarly, in the educational system OntoAIMS [31]
a dialog agent is used to maintain dialog aimed at achieving the goal and

45

46 5 Acquisition based on questions

a user interface which allows construction and modification of utterances
graphically.

The proposed method uses a model of application domain represented
by ontology and its concepts to generate questions in natural language (here
English) aimed at acquiring user characteristics for the user model. The
process of question generation is driven by defined rules. Assigning priorities
to characteristics provides better control over question generation, e.g. allows
suppressing generating of a question if necessary.

5.1 Principle of generating a question

An explicit way of acquiring and maintaining characteristics in the user model
employs direct responses from the user. It can be accomplished by filling in
forms, answering questionnaires, questions, etc. We distinguish questions:

1. that can be answered by filling their missing part; and

2. can be answered with a positive or negative answer.

We deduce that a characteristic of the user, we are interested in, is a part of
the question. An example of illustrating questions and answers is provided in
the Figure 5.1. It demonstrates four types of questions and related answers.
Each question contains the name of a characteristic from the user model that
is emphasized by the underlined font. The answer can be a number, text,
ordinal value, etc. The name of the characteristic can be also contained in
the answer.

Q: What is your name?

A: My name is John.

Q: Do you have any driving experience?

A: Yes, I do.

Q: What is your expected salary range.

A: My expected salary is from 25.000 to 40.000.

Q: How often are you willing to travel for a job?

A: Every day.

Figure 5.1: Example on questions and related types of answers.

To be able to generate such questions we employ templates. A template
is a predefined representation of a question that uses specific vocabulary
elements. The author of the template defines an order of the words that can
be used in the template. Instead of the name of the characteristic a special
identifier is used in the template. Following context relates to the question:

5.1 Principle of generating a question 47

− circumstances, which invoke generating of the question; and

− an object specifying which question should be generated and what
about.

The circumstances of the question are handled by user defined rules and the
object depends on the particular characteristic being researched for the user
model. A simplified principle of the generating of a question is depicted in
Figure 5.2.

Rules

action
Request

Characteristic
binding

Domain model

Question

concept

template

Question
templates

words

Vocabulary

Figure 5.2: Principle of the generating of a question.

At the very beginning, a list of properties for a concept from the domain
model is acquired. For instance, if job offers is the application domain, then
properties of the job offer concept will be added to the list. Each property
relates to a characteristic for which a question will be generated (i.e., it will
appear as an instance of a particular characteristic in the overlay user model).
Afterwards, properties can be used for:

− acquisition, if an instance of respective characteristic does not exist yet
in the user model; or

− maintenance, if an instance of respective characteristic already exists.

Unique names and priorities assigned to a question along with its structure
are stored in Characteristic binding. Furthermore, a binding specifies a tem-
plate and a noun which will be used in the generated question as a name of
the user characteristic. A suitable template for the characteristic is selected
from Question templates according to its unique identifier. Words to be used
in the question are stored in Vocabulary . Afterwards, a question is generated

48 5 Acquisition based on questions

for the user. The user is also provided with a part of an answer in the case
the answer is of ordinal value or an option type.

The process of acquiring and creating of a new instance of the user char-
acteristic differs from maintenance of existing one. In the case of creating
a new instance of a characteristic (i.e., acquisition) all the concept’s prop-
erties from Characteristic binding that do not have an instance in the user
model yet are acquired. If we deal with the maintenance, properties are
acquired with regard to rules fulfillment. In both cases, the list contains
uniquely named properties that are sorted according to a predetermined pri-
ority. Employing a priority hierarchy also allows response to the cases when
it is appropriate to suppress the generation of a question (e.g., gender of the
user is a characteristic that needs to be acquired only once).

Vocabulary

Our first intention was to use ontology that stores words as instances where
each word was specified as a part of speech. We gave up this approach because
of high requirements on filling such an ontology and low efficiency of existing
software support provided for ontologies thus the use of this approach would
have caused a negative impact on generating questions.

We employ a vocabulary that was built in the course of the project Text
Chunking1 aimed at dividing a text into syntactically correlated parts of
words. The vocabulary (words in English) we use is represented in the fol-
lowing form where each word is in a new line:

identifier;word;POS tag

The first column is a unique identifier followed by a word that will be used
in the template. In the generated question the identifier will be replaced
by word. The last column is the Part Of Speech (POS) tag. In some cases
the POS tag can also express a grammatical category as well (e.g., NN is
a noun in singular). The vocabulary contains approximately 17 000 words.
The POS tags specify categories using the following grammatical groupings2:

− number — a grammatical category for the forms of nouns and pronouns
and verbs that are used depending on the number of entities involved
(singular or dual or plural),

1Text Chunking, http://www.cnts.ua.ac.be/conll2000/chunking/
2TheFreeDictionary, http://www.thefreedictionary.com

http://www.cnts.ua.ac.be/conll2000/chunking/
http://www.thefreedictionary.com

5.1 Principle of generating a question 49

− tense — a grammatical category of verbs used to express distinctions
of time,

− person — a grammatical category used in the classification of pronouns,
possessive determiners, and verb forms according to whether they in-
dicate the speaker, the addressee, or a third party.

The main advantage of using this kind of representation is that we know
the semantics of particular words used by the questions. It also provides
higher efficiency than could be achieved employing ontological representation
of Part Of Speech. The available vocabulary contains a satisfactory amount
of words. Therefore, further maintenance of vocabulary is not expected,
however, it would be easy to update, considering the form it uses.

Sentence templates

We separate vocabulary from questions’ templates in order to address the
reusability of questions and also as an option to be able to replace vocabulary
if necessary. A template uses XML representation where identifiers of words
from vocabulary are used instead of individual words. The following example
illustrates a template of a question named ValueTemplate01 which can be
used for questions where a value is expected:

<question name="ValueTemplate01">
<pos order="1" instanceName="12456"/>
<pos order="2" instanceName="7398"/>
<pos order="3" instanceName="15432"/>
<pos order="4" instanceName="n01"/>

</question>

The element question contains elements pos which specify words from the vo-
cabulary to be used in the question. Each word in the vocabulary is identified
by its identifier and is assigned a position (using an attribute order) which
will be used in the question. In the above example identifiers 12456, 7398
and 15432 would be replaced by words “what”, “is” and “your” respectively.
Identifier n01 would be replaced with the name of the characteristic.

We proposed several templates to be used in the domain of job offers and
scientific publications. With the growing amount of available templates, the
conversation with the user becomes more natural. However, the case when
too many templates are provided is not very reasonable, e.g. creating one
template for each question is not very effective. Therefore, templates were
proposed with regard to their universality and reusability.

50 5 Acquisition based on questions

5.2 Binding characteristics

If we had all the necessary data (e.g., priority of a characteristic) to generate
a question stored in the ontological repository we would have to access the
repository to perform any change. Because of the small performance of exist-
ing (ontology) solutions, we use characteristics binding for practical reasons.
This assures we access the ontological repository only to acquire character-
istic’s value, to create new instances of a characteristic, or to update an
existing user characteristic and all other data store in the XML.

Binding characteristics provides additional information for the user model
that is necessary to generate a question. Such additional information for
a characteristic are:

− unique identifier;

− priority;

− template; and

− noun used in the sentence, which specifies a name of the characteristic
(it does not have to be unique).

A characteristic can be represented in the ontology as a set of concepts.
When binding its structure we consider following:

− namespaces;

− classes;

− datatype or object properties; and

− instances.

Simple characteristics are represented as RDF triples, i.e. subject — predicate
— object, which relate to a class the characteristic belongs to, name and value
of the characteristic respectively. Such a structure is easy to bind, but this
is not applicable to more complex user characteristics where characteristics
can have relationships to others, can create taxonomies, or a characteristic
which can get an ordinal value; or which can be represented as a class or an
instance.

It is more complicated considering such characteristics when we create
a new or we update an existing characteristic. Figure 5.3 depicts a structure

5.2 Binding characteristics 51

Offer

Source

Float

UserCharacteristic LevelOrdering

relatesTo

hasSource

hasConfidence

offer value

char highest

ExACT

hoursPerWeek

Figure 5.3: Example of a structure that represents preferred number of working
hours within a week.

of a part of user model — a characteristic representing the preferred num-
ber of working hours in a week. The characteristic includes an additional
property which is set when the characteristic is processed — confidence.

For illustration, we substitute full URIs identifying classes and proper-
ties in the figure with simple labels. The class UserCharacteristic represents
a particular characteristic that is in a relationship with a job offer (Offer).
It has a datatype property hoursPerWeek, which is of the floating number
type. Moreover, the characteristic has a relationship expressing its confi-
dence, which is represented as an instance of the class LevelOrdering, and
hasSource that specifies the source that caused its change. Gray rectangles
illustrate instances (their labels) that should be created after a user answers
a question.

We propose a way of assigning names to instances in regard to the struc-
ture of concepts. When creating a new instance of a characteristic, e.g. the
instance char of the class UserCharacteristic is assigned an additional suffix
— timestamp. We call this way of naming instances a pattern. Similarly, we
name the instance offer of the class Offer. On the other hand, an instance
highest (employed to express a level of confidence) of the class LevelOrdering
already exists in the ontology and therefore a suffix is not applied. Finally,
a property hasSource specifies a tool that processed the characteristic as the
last one. In this case, a name of the tool is used (e.g., ExACT).

To conclude, instances can be named as follows:

− using pattern — an instance is created according to the defined pattern
with a timestamp suffix, which format is configurable;

− adjusting desired value — when creating an instance, an ordinal, text
or numerical value can be assigned; and

− name use — a defined name is used to name an instance.

52 5 Acquisition based on questions

We use unique names (i.e., keys) to represent particular bindings which
are stored in Characteristic binding. A name of a key consists of an identifier
specifying a type of binding and a postfix, which is a unique number assigned
to the key. There are several possible identifiers that can be used, namely
c (class), op (object property), dp (datatype property), or i (instance).

Every key is assigned a symbolic name, namespace (in a prefix form),
instance’s name and its type. A part of binding data is a list of namespaces to
allow binding from prefix form to full URI form. Employing keys in bindings
improves its flexibility especially in the cases of changes in the domain or
user ontology. In the Figure 5.4 an example is depicted from the Figure 5.3
with keys assigned to individual parts of characteristic’s structure.

hoursPerWeek
Offer

Source

Float

UserCharacteristic LevelOrdering

relatesTo

hasSource

hasConfidence

offer value

char highest

ExACT

dp1
c4

op3

c1

op1

op2

c2

c3

Figure 5.4: A characteristic with assigned keys.

If a characteristic contains a complex structure of concepts, i.e. relation-
ships between classes and instances, binding would not be very effective
in term of the user characteristic’s structure. Therefore, only object and
datatype properties are acquired. Domains and ranges for properties are
acquired separately by employing specific queries.

However, in some cases, a bound property can contain more domains or
ranges. Here, it is necessary to define a particular domain or range that will
be used to create an instance of a specific characteristic explicitly. Every
occurrence of a definition is related to the particular characteristic and has
no influence on other characteristics that contain that property.

5.3 Rules for question generation

We use a rule based approach to manage characteristics. An advantage of this
approach is simplicity of creating and maintenance of such rules. We employ
a well known principle for rules: IF [condition] THEN [action]. Required

5.4 Evaluation 53

parts of the condition are a characteristic from the user model, operator, and
parameter of the condition. A default action generates a question.

A condition is defined according to data types, i.e. literals and instances
which represent a value of a characteristic. Literal values can be of sev-
eral types defined according XML Schema. An instance can get one of the
following values:

− ordinal value — it is not represented as a number, but values can be
compared and mutually sorted; or

− option — when a value occurs that is not measurable (e.g., level of
programming skills in Java).

Operators, such as less, greater, equal as well as special operator instanceOf,
can be used in a condition. The meaning of first three operators is obvious.
The operator instanceOf is employed when a value is of the type option and
expresses a condition in relationship between an instance and a class. In the
case of literals, a suitable type has to be set as the parameter of a condition
(e.g., for a number a numerical value has to be set, for string a string has to
be given). In the case of date type, an additional property defining a unit
has to be specified and obtains values from the minute up to the year. In
the case of an object property, values are identifiers of existing instances or
classes from the ontology.

Well defined rules initiate generation of a question in a right time, e.g. if
a characteristic is older than given time period. Another example is generat-
ing questions with regard to a tool that is responsible for creating or updates
of the characteristic. Employing priority allows also reaction to the cases
when it is appropriate to suppress the generation of a question (e.g., gender
of the user is a characteristic that needs to be acquired only once).

5.4 Evaluation

The proposed method aimed at acquisition and maintenance of user char-
acteristics in the user model is based on generating questions in natural
language (here English). We employ concepts from the domain model in the
process of question generation.

To evaluate the proposed method a software tool called Explicit Actual-
izer (abbreviated ExACT) was developed. It was implemented in Java SE 6
and uses Sesame3 framework to access ontological models which are repre-

3Sesame, http://www.openrdf.org/

http://www.openrdf.org/

54 5 Acquisition based on questions

sented in OWL DL. Figure 5.5 depicts output from the tool, i.e. generated
question with answers.

Figure 5.5: User interface for a question with multiple answers.

The method was evaluated using the job offer domain ontology narrowed
to information technologies field (created in the course of the project NA-
ZOU [59]) and ontology of scientific publications (project MAPEKUS [18])
with respecting user models (represented as ontology). During the evalua-
tion we focused on creating new characteristics (i.e., initialization of the user
model when the user accesses an application for the first time) and mainte-
nance of existing characteristics in the user model.

In both domains, we bound selected characteristics and created templates
to generate questions. A part of characteristic with binding information is
shown in the following listing:

<properties characteristic="hoursPerWeek" priority="2">
<property name="oa3" noun="none" sentenceTemplate="none"

domainConcept="c1" rangeConcept="c4" increment="false"/>
<property name="oa2" noun="none" sentenceTemplate="none"

domainConcept="c1" rangeConcept="c3" increment="false">
<setOptionValue name="c3" value="da4"/>

</property>
<property name="da1" noun="hours per week"
sentenceTemplate="QuantityTemplate" domainConcept="c4"
rangeConcept="none"/>

</properties>

A structure of a characteristic is defined within the element properties. Its
attribute characteristic specifies a name of the characteristic. Datatype and
object type properties related to the characteristic are described using an
element property, which allows definition of other attributes. Namely, name
is an identifier, noun specifies a part which will be included in the question,
sentenceTemplate is a name of a question’s template, domainConcept and

5.4 Evaluation 55

rangeConcept is the domain and range respectively. Domain and range have
a default value set to none. Attribute increment is applicable if a value of
datatype property is of a numeric type, e.g. number of updates for a charac-
teristic. In the case, when attribute increment is true, the related value of
datatype property is incremented whenever a characteristic is updated. An
element setOptionValue sets a value of a type options within the range of the
element property.

Furthermore, rules to manage generating questions were defined. Exam-
ples of proposed rules are shown in the following listing:

<rule type="dateTime">
<condition parameter="gu:hasTimeStamp" operator="less"

value="1" unit="week"/>
<action type="ask"/>

</rule>
<rule type="ordinalValue">

<condition parameter="c:hasConfidence" operator="less"
value="c:_loAverage"/>

<action type="ask"/>
</rule>

The templates were proposed with regard to their universality, i.e. our goal
was to design templates to be used for as many questions as possible. With
the growing amount of available templates, the conversation with the user
becomes more natural. However, the case when too many templates are
provided is not very reasonable, e.g. creating one template for each question
is not very effective.

We designed 7 templates for the job offer domain. These templates allow
for generation of questions addressing 22 characteristics. For the scientific
publications domain we proposed 3 templates which allow generation of 5
questions. The small amount of templates (questions) in this domain is
influenced by the straightforward structure of the domain.

Actualization of characteristics directly influenced approximately 10–16
statements in the user model (ontology). Since the ontology repository does
not provide satisfactory performance as for instance relational repositories,
we also evaluate time demands. For simpler characteristics (with 10 state-
ments) actualization took an average of 4.7 seconds, whereas actualization
of characteristics with 16 statements took 6.4 seconds on average.

We performed another experiment on a travel ontology to verify domain
independency of the method. We wanted to generate a question to find out
the user’s opinion about accommodation (represented by class Accommo-
dation) in a particular destination (class Destination). The result is that

56 5 Acquisition based on questions

the method, as it is proposed, is not suitable for characteristics where two
independent instances need to be created since we expect one name of a char-
acteristic in the question.

5.5 Discussion

One way of acquiring information for the user model is employment of the
user feedback. The main problem of feedback based solutions is that neces-
sary questions are mostly hard coded for a particular application. However,
there are some solutions that use generation of the questions, such as dialog
systems. We focus on approaches that can be used for feedback generation
and/or employ ontologies.

Dialogue systems can provide relatively open-ended prompts, i.e. users
may provide responses that are not an exact fit with what is expected [58].
In this approach rich ontological structure of the domain is crucial for build-
ing dialogue systems. Employment of ontology helps to exploit well known
relationships (e.g., synonyms, hypernyms, hyponyms) to achieve more nat-
ural communication. Sentences are generated according to templates. The
templates are of the three types, i.e. property, entity and process. The type
of the template as well as the use of proper terms is driven by rules.

In [55] there is described an approach to planning utterances in natural
language that can dynamically use context information about the environ-
ment in which a dialog is located. The process of planning is guided by
a chooser. It specifies entry conditions and actions associated with different
choices what is similar to our method where we use if-then rules.

The educational system OntoAIMS [31] is built upon the OWL-OLM (an
OWL-based open learner model). OWL-OML uses a dialog agent to main-
tain dialog with regard to the prepared questions aimed at achieving the goal
and a user interface which allows construction and modification of utterances
graphically. The used dialog framework is domain independent. There are
two types of questions: yes/no questions and open questions. The questions
are generated according to the domain concepts and can be answered by
transforming them into queries. The answer is checked by the agent whether
it is supported by the domain ontology. If the OWL statement is incorrect,
the user is notified that his or her question can not be answered. The goal
of this approach is to improve user’s knowledge in a particular domain using
dialog. Our method generates questions according to a concept’s proper-
ties and provides the user with prepared answer considering the type of the
question.

5.5 Discussion 57

An approach, described in [65], distinguishes student feedback given to
a student during learning, author feedback given to an author during course
authoring and group feedback given from a group of learners who study
a course to an author. This approach is suitable for domains with hierar-
chically structured terms. The aim is to provide semantically rich feedback
to authors and learners. The feedback is provided according to an ontology
structure and can be of generic or specific type. The generic feedback is
independent from the ontologies being used and makes this approach avail-
able for other applications. On the other hand, the specific feedback requires
user’s involvement (it is defined by the author). The feedback is given about
completeness and correctness of the list of studied domain concepts and re-
lations using different dialog patterns. The advantage is that the feedback
is generated automatically (not hard coded) with regard to domain concepts
however its purpose is to improve learning process not to be used for the user
model.

The M-PIRO project uses meta-data to generate text in natural lan-
guage [4]. Application domain is an electronic museum where multilingual
personalized descriptions of exhibits are produced from non-linguistic infor-
mation in the database. From the personalization perspective, the user is
avoided from being presented repeating information that he/she has already
seen. M-PIRO is build upon the ILEX natural language generation sys-
tem [64]. In the course of this project a tool was developed that is capable
of generating texts according to additional information about existing en-
tities. The text generation is processed in four stages. The first stage is
content selection where the most appropriate facts are selected to be de-
livered to the user with regard to stereotypes and user’s history of visited
content. The next stage, document planning, outputs an overall document
structure with the desired sequence of the facts and rhetorical relations. The
micro-planning stage specifies how a fact can be expressed as a clause, which
verb to use, in what tense, etc. Here, templates are employed. The last
stage, surface realization, is responsible for producing the final textual form
of the descriptions (e.g., word forms, placing the various constituents (sub-
ject, verb, object, adverbials) in the correct order, accounting for number
and gender agreement). This project served as a motivation for our method
(e.g., employing templates). Our method generates questions with regard to
ontological concepts.

To sum up, the proposed method can be used for acquisition and also
for maintenance of the user model. The main advantage of the method is
that questions are generated automatically for concepts from the domain
model. Afterwards, user’s answers are transformed into characteristics in

58 5 Acquisition based on questions

the user model. The entire process (i.e., when and what question needs to be
generated) is driven by user defined rules that can be restricted by question’s
priority.

Chapter 6

Acquisition of user characteristics
based on content analysis

The analysis of the content presented to users is a suitable source of infor-
mation [25] for personalized applications where the personalization of visible
aspects is usually based on user characteristics represented in a user model.
To provide proper personalization the user model needs to be populated with
meaningful user characteristics that are up to date, which can be obtained
explicitly from the user (e.g., by filling forms) or by observing user behavior
(implicit feedback), or by data mining from activity logs.

If a user’s rating of the displayed content is known (i.e., user’s interest)
we can acquire some characteristics by employing content analysis in combi-
nation with similarity. Since the rating varies, similarity can help to analyze
the reasons why it is low or high. For instance, let us consider a job offer in
the information technology field. One can find hundreds of offers on the Web
that advertise a position for Java programmers requiring high school educa-
tion with at least three years of previous experience, knowing basics in Web
technologies and providing a motivating salary. If two offers are similar in all
properties except the location and have different ratings (e.g., one in London
and one in Washington, D.C.), the difference in rating was likely caused by
the location property. It is unimportant whether a user from Europe prefers
to work in Europe (high rating for job offer in London) or whether he/she is
an adventurer who wants to try an overseas job (high rating for Washington).

From different ratings given to different content we can deduce values of
specific user characteristics and thus populate the user model. Higher value
of interest given to the offer located in Washington, D.C. could reveal that the
location is an important property for the user, while equivalent ratings given
to different content could reveal that location is irrelevant for the user since

59

60 6 Acquisition based on content analysis

it had no influence on the ratings. While the presented examples were rather
simple, more general information about user preferences can be discovered
using more sophisticated heuristics.

People declare judgments about objects without realizing similarity. For
the purposes of this work we define similarity between two objects formally.

Definition 6.1 Let us assume we have two objects x and y. Then the fol-
lowing statements are valid for the similarity between these objects [19]:

− sim (x, y) ∈ [0..1];

− sim (x, y) = 1 → x = y: similarity of identical objects;

− sim (x, y) = 0: similarity of entirely different objects;

− sim (x, x) = 1: similarity is reflexive;

− sim (x, y) = sim (y, x): the similarity is symmetric;

− similarity and distance are mutually inverse;

− sim (x, z) ≤ sim (x, y) + sim (y, z): the triangle inequality.

There exists a diversity in views regarding symmetry in similarity. Whereas
according to [19] the similarity is symmetric, on the other hand, Tversky
claims that symmetry is the choice of similarity and apparently, direction of
asymmetry is determined by the relative salience of the stimuli; the variant
is more similar to the prototype than vice versa [75]. He demonstrates it on
an example that judged similarity of North Korea to Red China exceeds the
judged similarity of Red China to North Korea.

Another related term, which is used often, is semantic similarity . We
distinguish probability-based [69] and structure-based [68] approaches to the
semantic similarity. The probability-based approach depends on the fre-
quency of the terms occurrence, whereas the structure-based approach con-
siders a structure of compared objects (e.g., taxonomy). Both approaches
consider means of the ontological representation for computing similarity.

Definition 6.2 The semantic similarity is a concept where likeness of com-
pared objects is determined considering their content while different metrics
are used with regard to the meaning of the content.

We present a method for the comparison of instances of ontological concepts
aimed at the identification of common and different aspects for personaliza-
tion purposes. The method exploits the advantage of ontological information

6.1 Recursive traversing of ontology instances 61

representation and computes instance similarity with regard to particular
properties of concepts. In personalized applications where the user model is
available, the method also supports more accurate similarity computation for
individual users according to their characteristics. Our method is designed
with regard to domain independency to be available for using in arbitrary
domains. Inputs and outputs of the method are depicted in the Figure 6.1.

Instance A

Instance B

Similarity
metrics

Similarity

[0..1]

Concept
comparer

+ -

Properties

Figure 6.1: Inputs and outputs of the method.

The input of the method is two instances (Figure 3.6) and a set of sim-
ilarity metrics that can be used. The output is quantitatively expressed
similarity measure between instances and an output object that contains
two sets of properties — a positive and a negative.

6.1 Comparison by recursive traversing
of ontology instances

The main idea of the method comparing ontology instances is based on the
evaluation of common property pairs present in both instances. The rough
principle of the method illustrating comparison of two instances instanceA

and instanceB is shown in Algorithm 1.
When comparing two instances of the concepts, properties can appear in

different cardinalities:

− single in both instances;

− multiple in both instances; or

− single/multiple in one instance only.

When the property has a single occurrence in both instances, then the simi-
larity of related elements (instances in the case of object properties or literals

62 6 Acquisition based on content analysis

Algorithm 1 Recursive method basics
function getSimilarity(instanceA, instanceB)

set similarity to 0.0
set counter to 0
store properties for instanceA and instanceB to properties

foreach property in properties do
increment counter
if property is in both instances then

store connected elements to elementX and elementY
add computeSimilarity(elementX, elementY) to similarity

else
add 0.0 to similarity

end if
end foreach

return similarity/counter
end function

function computeSimilarity(elementX, elementY)
if property is datatype then

return getDatatypeSimilarity(elementX, elementY)
else

set similarity to 0.0
add getObjectSimilarity(elementX, elementY) to similarity
add getSimilarity(elementX, elementY) to similarity
return mean value of similarity

end if
end function

in the case of datatype properties) is evaluated using different similarity met-
rics. The comparison of datatype properties ends after a metric is used to
compute the similarity measure between the related literals. For object prop-
erties a metric for related instances is computed (e.g., taxonomy distance)
and further comparison is performed recursively on the respective instances
until literals are reached or until there are no properties left.

When an instance is being traversed recursively, an inverse property can
connect it to an already traversed instance. For instance, London is con-
nected to a job offer with the property hasDutyLocation. Since more than
one job offer can be located in London, we require all of them to refer to the
same instance (e.g., London isDutyLocationOf other job offers). If we do not

6.2 Comparison metrics 63

consider inverse or symmetric properties, the algorithm will traverse them
and enter an infinite loop. Therefore, we filter out inverse and symmetric
properties related to the examined property. However, loops can still occur,
e.g. if two different properties lead to the same instance. In such cases, the
already traversed instances are omitted and further traversing stops.

Multiple occurrences of properties (e.g., hasPrerequisite) in an instance
are the most complex case we address. In this case, two sets are constructed
which contain elements connected to the examined property in the first and
second instance respectively. These two sets can have different cardinalities
— the problem is to identify (i.e., to match) similar elements between these
two sets. We use our similarity measure to identify such element pairs, which
are then compared and the computed similarity contributes to the total sim-
ilarity. However, the identified pairs do not provide satisfactory results in
some cases. For example, if in the first instance the hasPrerequisite property
has the value “Java or C programming” and in the second instance multiple
values “Java programming” and “C programming” consistent results are dif-
ficult to achieve. In our approach a pair with higher similarity according to
the used similarity metric is selected (i.e., similarity with only one property’s
value from the second instances is considered), but more complex heuristics
can be proposed and employed to identify a 1 : n mapping.

If single or multiple occurrence of a property occurs only in one instance,
we estimate similarity of values attached to the property as equal zero. It is
based on the similarity definition, i.e. the similarity equals zero if two objects
are entirely different. Here, we assume that instances are entirely different in
the property, since a value is assigned to the property in one instance only.

6.2 Comparison metrics

A variety of comparison metrics can be used to compute similarities between
instances or literals connected to a property. We proposed two groups of
metrics with regard to a property’s type since they must be treated differently
due to their different nature — datatype and object metrics.

Datatype metrics

To compute similarity between literals connected to a datatype property any
string based metrics can be used1. However, to achieve better results, the

1A collection of methods suitable for string comparison is implemented in the open source
library SimMetrics, http://www.dcs.shef.ac.uk/~sam/simmetrics.html

http://www.dcs.shef.ac.uk/~sam/simmetrics.html

64 6 Acquisition based on content analysis

literal type should be considered (e.g., simple string, date, number, logical
value).

If the literal type is a logical value there are only two possible values that
can be set — true or false. Although the comparison of two logical values
with any string metrics as two strings would result in a value in the range
〈0, 1〉, the similarity of two logical values can be either 1 or 0. Let x and
y denote logical values. The similarity measure for literals of logical type is
computed as follows:

simlogical (x, y) =

{
1.0 x = y

0.0 otherwise
. (6.1)

Comparing literals of date and number type is strongly dependent on the ap-
plication domain and context. In an ancient history domain a time difference
of two centuries would likely be considered similar, while grocery expiration
dates would not. Therefore, we propose the following similarity metrics for
date similarity:

simdate (x, y) =

 0.0 |x− y| ≥ N

1.0− |x− y|
N

otherwise
, (6.2)

where x , y denote dates and N is a number expressing precision or time
period that is reasonable to be considered while comparing dates. N denotes
the number of the smallest time units that are still meaningful with regard
to the chosen time period. For instance, for a job offer, one year is a period
that is still meaningful since typical properties with date type values are the
start date or the validity of an offer. Therefore, N is set to 365 and absolute
value of distance between the respective dates is also expressed in the same
units (here days).

Similar problems emerge when numbers are compared. Specifying preci-
sion (or range) for numbers is difficult as we usually do not know what the
range of compared numbers can be. Furthermore, it is likely that numbers
will occur in one instance in several contexts, i.e. in the job offer domain the
number of working hours (dozens) or the salary (dozens of thousands or even
hundreds depending on the period) have different possible ranges and units
(e.g., hours, currencies).

However, this can be solved if additional information about the range
is present, such as a property specifying the type of units. This can be
helpful if value normalization before comparison is performed and heuristics
can be also used. In [67] an approach is described which is aimed at the
normalization of values that are expressed in different units (e.g., the salary

6.2 Comparison metrics 65

in various currencies). The approach is based on logical programming and
two implementations are provided — ASP and Prolog. Employing Prolog
is more suitable for normalization of values where different units were used.
In our experimental evaluation, we employed this approach to normalize
numeric values in our dataset.

Another problem that should be mentioned is that a number can oc-
cur in positive as well as negative form. People tend to think in positive
numbers [41] which is more natural. For instance, people do not say “I have
gained minus 5 kilograms”, but they automatically change statement to avoid
using negative numbers to “I have lost 5 kilograms”. Properties that gener-
ate positive and also negative values are rarer than properties generating
either positive or negative values only. We consider the similarity measure
of two opposite numbers as equal 0 because of their different nature. Simi-
larity between two numbers is expressed according to their distance but, in
particular cases, the context is also important, e.g. a difference of 2 degrees
Celsius when the temperature is 20 degrees is not quite the same as when
the temperature is 0 degrees when water in liquid state turns into ice. The
similarity measure of two numbers x and y that are both either positive or
negative and considers particularity of the job offer domain is computed as
follows:

simnumerical (x, y) = 1.0− ||x| − |y||
max (|x| , |y|)

. (6.3)

When comparing strings, a simple comparison provided by a default method
in any programming language (e.g., in Java) does not give satisfactory results.
Methods equals and equalsIgnoreCase are provided in Java implicitly but
they return a Boolean value instead of a similarity measure. To compare
strings we employ Levenshtein similarity metric from the SimMetrics library
that uses decapitalised strings as input.

Object metrics

When computing the similarity of instances connected to an object property
their other characteristics can be considered (e.g., the number of related
properties and their types or the position in the taxonomy) [3, 69]. Since
instances in ontologies can belong to multiple classes simultaneously, one way
of measuring the similarity at the class level is to determine the number of
common and different classes they belong to. Consequently, if two instances
belong to several classes simultaneously, they are more similar than instances
that have no common class (except the base class, i.e. owl:thing).

66 6 Acquisition based on content analysis

Taxonomy distance is a heuristic similarity measure for evaluating sim-
ilarity between instances of the concepts that are connected to the object
properties. Concepts on higher level in the taxonomy are more general.
A natural way to estimate similarity in the taxonomy is to measure the dis-
tance between concepts to which the compared instances belong.

The distribution of the concepts’ density is usually not balanced in is-a
taxonomy [69]. Also granularity in various parts is different, i.e. the distance
of links between concepts is not semantically uniform.

We assume that the closer instances are in the taxonomy the more simi-
lar they are. The edge-counting method computes the shortest path between
related concepts and it is also known as common-ancestor specification. Dis-
tance is defined as the shortest path going through a common ancestor or as
the general shortest path, potentially connecting two instances through com-
mon descendants/specializations [13]. These methods compute the distance
in the taxonomy and do not capture differences in taxonomy granularity.
We introduce a taxonomy distance metric where the similarity of instances
increases based on how many common concepts they have in the taxonomy.
A combination of the number of common concepts with the depth of the
instances in the taxonomy is a way to consider granularity in the taxonomy
structure. When using this approach there is no need for further normaliza-
tion of the distance between instances to get a valid similarity measure.

Let us define a function depth(instance) expressing the depth from the
root concept in the taxonomy to the concept which a given instance belongs
to. Let us define a function CommonConcepts(instance1 , instance2) that
computes the number of concepts that have two instances in common in
the paths leading from the root concept to concepts which instance1 and
instance2 belong to. The similarity is computed as the number of common
concepts in the taxonomy divided by the number of concepts in the higher
depth:

simtax (instance1 , instance2) =
CommonConcepts(instace1 , instance2)

max (depth(instance1), depth(instance2))
. (6.4)

Two examples are depicted in Figure 6.2. The common concepts in the
taxonomy are emphasized by dotted arrows while solid arrows are used to
show greater depth from the root concept.

Another problem we encountered is the identification of relevant element
pairs in the case of multiple occurrences of a property. Each instance con-
nected to an object property in the ontology can have a label that could
be compared employing a datatype metric. However, solving the problem
using only the label is not satisfactory as labels are only optional and do not

6.2 Comparison metrics 67

instance1 instance1

instance2

instance2

2

4
3 3

Figure 6.2: Example of taxonomy distance computed for instance1 and instance2 .
For the left example simtax(instance1 , instance2) = 2/4 = 0.5, for the right exam-
ple where both instances belong to the same concept in the taxonomy is similarity
computed as simtax(instance1 , instance2) = 3/3 = 1.0.

necessarily express semantics. Therefore, they should be used very carefully
(for automatically acquired instances it is obvious that meaningful labels are
not present).

To identify pairs of compared elements we construct a similarity matrix
whose size is specified by the cardinalities of the respective element sets. The
matrix holds similarities for each pair of elements from the sets. In the case
of literals, datatype metrics are used as described above. For instances con-
nected to object properties the recursive algorithm is employed. Afterwards,
the identification of relevant pairs is performed where the number of pairs
is given by the cardinality of the smaller set. The resulting algorithm for
finding relevant pairs is shown in the Algorithm 2.

Algorithm 2 Finding relevant pairs
while count(pairs) < count(getSmallerSet(setA, setB)) do

set maxV alue to getMaxValue(matrix)
store maxV alue to List
set coordinates of maxV alue to X and Y
foreachitem in matrix do

if item.row = X or item.column = Y then
set item to null

end if
end foreach

end while

Finding pairs with very low similarity measures can be prevented by using
a critical threshold value. Leftover elements are handled in the same way as
described above for elements connected to a property that has occurrence in
one instance only. An example of finding pairs from the similarity matrix
based on the described algorithm is shown in the Figure 6.3.

68 6 Acquisition based on content analysis

0.3 0.8 0.7 0.3

0.7 0.9 0.3 0.5

0.3 0.1 0.4 0.6

0.9 0.3 null 0.7 0.3

null null null null

0.3 null 0.4 0.6

0.9

0.7

A1

A2

A3

B1 B4B3B2

Similarity matrix Similarity matrixList List

Figure 6.3: Identifying relevant pairs from sets.

Similarities used in the example are random numbers. In the first iteration
(left) at [A2 ,B2] is the maximal value 0.9 and it is stored in the List. This
value corresponds to the similarity computed for a pair of elements. The
value will be used in the aggregation of the total similarity and other values
on that row and column are set to null (second row and second column). In
the next iteration, the maximal value 0.7 is at [A1 ,B3], the last coordinate
is [A3 ,B4]. Element B1 is evaluated as a leftover one.

6.3 Similarity estimation

In our approach the total similarity between two instances of ontological
concepts is defined as follows:

Definition 6.3 The total similarity of two instances is aggregated as the
mean value of the similarities computed between elements connected to par-
ticular properties. The computed similarity is symmetric.

However, other aggregation functions can be employed such as weighted mean
value. Let us compare two instances InstA and InstB . Let these instances
have the following properties respectively:

A = {property1 , . . . , propertyn},
B = {property1 , . . . , propertym}.

(6.5)

The way of ordering properties in the sets is not important since the com-
parison method treats common properties and leftover properties differently
as described above. Let PropertySM be a similarity measure (SM) that is
computed for elements connected to a common property. Then similarity
measure for two instances is computed as follows:

sim (InstA, InstB) =

|A∩B|∑
i=0

PropertySMi (elementA, elementB)

|A ∪B|
, (6.6)

6.3 Similarity estimation 69

where elementA and elementB are elements (instances or literals) connected
to the i -th property. Since there can be datatype or object properties, we
introduce the General similarity measure that encapsulates all the similar-
ity measures that are available. It is computed for elements connected to
a property (e.g., PropertySM used in the Equation 6.6 is its special case).
The General similarity measure fulfills the same conditions as defined for the
similarity and it gets values from the range 〈0, 1〉.

Our method is based on the comparison of elements connected to identical
properties. A special case when an instance connected to an object property
is compared with a literal does not occur, as that would be against the
OWL DL specification we focus on.

The General similarity measure is computed with regard to the property
type. In the case of a datatype property the used metric depends on the
corresponding literal type as described above. For object properties, the
similarity measure for related instances is computed as the aggregation of
the following partial similarity measures:

− Label-based similarity measure (LabelBSM), which is computed for el-
ements’ labels employing string metrics if labels holding meaningful
information are present (if instances were acquired automatically mean-
ingful labels are usually not present);

− Property-based similarity measure (PropertyBSM), which is computed if
instances have additional properties that are used to invoke a recursive
computation of the General similarity measure;

− Taxonomy distance similarity measure (TaxonomyDSM), which is com-
puted as described in the Section 6.2.

Each of these similarity measures has values in the range 〈0, 1〉. The final
similarity measure simobject (X ,Y) for two instances X and Y having the
propertyi is computed as the mean value of the used measures:

simobject (X ,Y) = (6.7)

=
LabelBSM (X ,Y) + PropertyBSM (X ,Y) + TaxonomyDSM (X ,Y)

N
,

where LabelBSM , PropertyBSM and TaxonomyDSM are the respective sim-
ilarity measures described above and N is the number of similarity measures

70 6 Acquisition based on content analysis

that were employed in the individual case. For instance, if the meaning-
ful labels are not present, the Label-based similarity measure is omitted and
N = 2.

In Figure 6.4, there is an example showing two job offers that both consist
of three properties only. The depicted job offers have the object property
(hasPrerequisite) and two datatype properties. The notion of objects used
in the figure is the same as used in Figure 3.6.

JobOffer

hasPrerequisite

startDate

requires hasLevel

name

1 2 3Depth

JobOffer Date

...

String

...

Figure 6.4: Example of different depths of properties of a job offer instance.

The gray rounded box is used to highlight all the parts of the object prop-
erty which are considered while similarity is computed. Datatype properties
have only one assigned value, thus highlighting was not necessary. For illus-
tration, only properties and connected elements are shown; other elements as
well as possible labels that are considered in enumeration are not depicted.

The purpose of this example is to show that particular properties can have
different depths. While the largest distance of datatype properties is 1 from
the root instance, in the case of an object property where other properties
can be attached to the instance, the depth is 3 as depicted in the figure.
In such properties more general information are closer to the root instance.
The more distant instances are from the root, the more specific information
they hold. If similarity is computed as a mean value of similarities computed
on particular levels, high values of similarity on lower levels will significantly
influence low similarity computed on the top level. The similarity measure
for the entire property is computed as mean value of similarities computed
on particular levels:

simproperty (elementA, elementB) =

maxLevel∑
i=0

simobject (Xi, Yi)

maxLevel
, (6.8)

6.3 Similarity estimation 71

where elementA and elementB are elements connected to the examined pro-
perty, simobject is computed as defined in Equation 6.3 and maxLevel is the
maximal nesting depth for the property . Figure 6.5 shows the similarity
computed for an object property in XML notation. The element similarity
specifies the aggregated similarity from inner elements via its value attribute,
while its attribute property specifies the property for which the aggregated
similarity is computed. In the example, partial similarities were 0.2, 0.3 and
1.0 respectively to the growing distance from the root. The total similarity
measure computed for the property is 0.5.

<similarity value="0.5" property="hasPrerequisite">
<parts>

<similarity value="0.2" property="requires"/>
<parts>

<similarity value="0.3" property="hasLevel"/>
<parts>

<similarity value="1.0"/>
</parts>

</parts>
</parts>
</similarity>

Figure 6.5: Example on computing similarity for object property.

Decreasing the weight with growing distance seems to be reasonable and
we propose to employ the reciprocal function of x, where x stands for level
of nesting depth. Thus, the weight for each level is computed as:

weightx =
1

x
. (6.9)

When using weights the similarity for a property is computed as follows:

simproperty (elementA, elementB) =

maxLevel∑
i=0

weighti × simobject (Xi, Yi)

maxLevel
. (6.10)

Employing weights in the similarity estimation for the object property from
Figure 6.5 is shown in Figure 6.6 and results in the similarity measure 0.2278.
The similarity element is extended with the weight attribute that specifies
the weight computed based on the nesting depth.

Now, the computed similarity is closer to the similarity computed on the
highest level and shows less of an influence from bottom levels. The proposed

72 6 Acquisition based on content analysis

<similarity value="0.2278" property="hasPrerequisite">
<parts>

<similarity value="0.2" property="requires" weight="1.0000"/>
<parts>

<similarity value="0.3" property="hasLevel" weight="0.5000"/>
<parts>

<similarity value="1.0" weight="0,3333"/>
</parts>

</parts>
</parts>
</similarity>

Figure 6.6: Similarity influenced by weights with regard to nesting depth.

weights are also useful in the same way for the datatype properties. Since
depth of datatype properties connected to the root instance always equals 1,
the computed weight also equals 1 and the computed similarity measure is
thus only the result of the used metric according to the literal type.

6.4 Personalized similarity
and user characteristics

The aggregate of partial similarities is always the same no matter what the
context is. To improve the accuracy of our similarity evaluation method
with respect to individual users’ preferences (if a user model is available), we
introduce weights that personalize the similarity estimation which allows us
to compute personalized similarity for individual users:

sim (InstA, InstB) =

|A∩B|∑
i=0

weighti × PropertySMi (elementA, elementB)∑
weight

, (6.11)

where the semantics of variables is the same as in Equation 6.6. The weight

variable has values in the range 〈1, w〉 based on the match between the prop-
erty and the value of the corresponding characteristic in the user model.
Since we assume that the user’s likes should have greater influence on the
total similarity, we increase the weights of properties for which correspond-
ing characteristics are present in the respective user model and their values
match with the compared instance. The exact increase of individual weights

6.5 Evaluation 73

is the subject of experiments for any particular domain. The meaning of the
proposed weight is as follows:

− “1” if there is no correlation between a property of the instance and
a characteristic in the user model; this weight also solves problems
when the user model is not available and thus has no influence on the
computing of personalized similarity for a particular user;

− “w” if there is match not only between a property of the instance and
a characteristic but also between their values; or

− a value between the previous two values means that there is a match
between the examined property of the instance and the user model,
but the related value is not identical. For instance, the values could
be instances that are located on different levels in the taxonomy tree
(e.g., a city belongs to the same region as the city preferred by the user
in the user model but it is not that city).

For personalization purposes, our goal is not only to compute the similarity
between instances but also to investigate reasons that “caused” the similarity
or difference. User preferences can be deduced from implicit and explicit user
feedback (e.g., rating). We assume that if the instance includes a property
whose value the user likes, it will likely influence his/her rating towards the
higher (or positive) values. On the other hand, properties of the content
with the values that the user dislikes will influence rating towards lower (or
negative) values.

Since we are interested in properties that significantly influence user rat-
ing and thus also total similarity, we introduced two threshold values that
divide properties into three sets based on the computed similarities. If the
similarity computed for a property is greater than the positive threshold then
the property is assigned to the positive set, if the computed similarity is lower
than the negative threshold the property is assigned to the negative set.

6.5 Evaluation

Experimental evaluation was performed using the software tool called Con-
cept Comparer (abbreviated ConCom), which was implemented in Java and
uses the Sesame framework to access ontological models represented in OWL
DL. For datatype properties, the Levenshtein method was used while for
object properties the proposed taxonomy distance was employed. The eval-
uation was performed on the job offer ontology developed in the course of

74 6 Acquisition based on content analysis

the research project NAZOU. The smallest dataset contains 100 job offers
mostly from the information technologies field. ConCom can work in two
modes which are configurable from the command line. In the first mode, the
total similarity is computed for all properties, i.e. if a property occurs in one
instance only the 0 is aggregated. In another case, only properties that are
common for both instances are considered, thus other properties are ignored
and do not influence the total similarity.

Experiment 1: All properties vs. Common properties

The aim of the experiment was to compare results computed in two ways and
to specify positive and negative thresholds. In the experiment, the similarity
for all possible 10 000 instance pairs was computed. The experiment showed
that results satisfy all criteria required for similarity as defined in Section 6.3.
Figure 6.7 depicts a sample of 600 instance pairs for which similarity was
enumerated in both operating modes of ConCom — the computed values
are ordered by similarities computed for all properties.

0,00

0,20

0,40

0,60

0,80

1,00

0 100 200 300 400 500 600
Examined pair

Si
m

ila
rit

ie
s

All properties Common properties

Figure 6.7: Similarity computed by ConCom considering all/common properties.

The thresholds were specified experimentally for the job offer domain. We
computed similarity for 55 000 properties employing the described method.
Properties with similarity equal to 0.0 or 1.0 were not considered to eliminate
identities and properties with no occurrence in both instances. The rest of
the properties was ordered according to the computed similarity measure and
using the Pareto principle (also known as 80/20 rule). We split the most
influential 20% in half to select 10% of the highest and 10% of the lowest
values. This way, the positive threshold was set to 0.65 and the negative

6.5 Evaluation 75

threshold to 0.25. The domain dependence of thresholds is the subject of
further experiments.

The properties classified by this method can be transformed into user
characteristics and used for populating or updating existing user models.
Since the transformation of properties into user characteristics as well as their
update in the user model is beyond the scope of this paper, the presented
method only prepares inputs for further processing. Using both the positive
and negative set of properties in combination with user feedback for user
characteristics updates in the user model would improve user characteristics
estimation.

Using only common properties in our experiments with job offers resulted
in a narrow range of similarity values — in 89% of the cases the computed
similarities were in the range 0.30 to 0.75. We set the positive threshold
experimentally to 0.65 and the negative threshold to 0.25, but such thresholds
do not produce useful properties that could be used for user characteristics
discovery. Therefore, similarity computed for all properties must be used to
acquire properties based on thresholds.

Experiment 2: ConCom vs. Human

The aim of the experiment was to find out which type of the similarity
computed by ComCom better mimics similarity assessed by human users.
A sample of 300 job offer pairs was used with 30 randomly selected sample
pairs that were presented to the user twice in order to verify evaluation
consistency. The user assessed similarity on a scale from 0 to 7, specifying
that offers had nothing in common (rating 0) to equivalent offers (rating 7).
Afterwards, the acquired values were normalized to the similarity interval.

Similarity computed for common properties was used for comparison with
human estimation since its values more accurately mimic human assigned
similarity values. This could have been caused by the fact that human users
can more easily evaluate a lower amount of (common) properties. For illus-
tration, the result for a set of 40 randomly selected offer pairs is depicted in
Figure 6.8.

It is theorized that the cause of evaluation differences is probably derived
from specific preferences of the human user who usually makes decisions
based on the properties he/she considers important. It is likely that another
user would evaluate the same sample differently.

We have not found significant differences between the two evaluations of
the same instance pairs. In 70% of the cases, the pairs were assigned identical
similarity values, in 16.67% of cases the difference was one point on the scale,

76 6 Acquisition based on content analysis

0,00

0,20

0,40

0,60

0,80

0 5 10 15 20 25 30 35 40
Examined pair

Si
m

ila
rit

ie
s

Human Common properties

Figure 6.8: Similarity estimated by a human and by ConCom for common proper-
ties.

in 10% of cases it was two points while only in 3.33% of cases it was three
points. This shows that users do not necessarily evaluate the same content
in the same way if an adequately large scale is provided, especially if there
is some time delay between evaluations.

Consequently, for further experiments where the user model was involved
we used similarity computed only for common properties.

Experiment 3: Adjusting weight for personalized
similarity

We assume that a user’s likes or preferences stored in the user model influence
personal similarity perception. Therefore, if the user model is available,
its characteristics should have a notable influence on the total estimated
similarity. The goal for this experiment was to identify the upper weight
bound to be used in the computation of personalized similarity.

Figure 6.9 depicts similarities computed with respect to a given user
model, which consisted of only one characteristic (hasDutyLocation). The job
offers used in the experiment contained the hasDutyLocation object property
and its value was the same as in the user model.

The growth of the similarity estimation is not linear as it depends on the
number of properties the job offers consist of. The differences were in the
range 0.06 to 0.12 for the upper bound w set to 2.0 and from 0.15 to 0.26

for w = 4.0, and varied based on the number of properties. Job offers used
in the experiment had an average of 16 properties. Our experiment shows
that using doubled weights causes a significant improvement in the similarity
evaluation and is a worthy selection.

6.5 Evaluation 77

0,20

0,40

0,60

0,80

1,00

0 2 4 6 8 10 12
Examined pair

Si
m

ila
rit

ie
s

ConCom (w = 1) w = 2.0 w = 4.0

Figure 6.9: Weighted similarity computed with regard to a user model.

Experiment 4: Personalized similarity

The aim of the last experiment was to investigate how the user model influ-
ences similarity computation and accuracy. In the experiment a user model
with three characteristics was used — hasDutyLocation, offersPosition and
hoursPerWeek. We use an overlay ontology-based user model2 that was devel-
oped as a part of project NAZOU. The user model was acquired by the Log-
Analyzer tool [9] and contained both characteristics and preferences. A pref-
erence indicates that the related property is important for the user but there
is no specific value assigned to it. For preferences we consider the weight as
half of the upper bound employed in the computation of personalized sim-
ilarity (weight = w/2). Doubled weights were used for characteristics as
described in the previous experiment. If a property occurs in the user model
both as a characteristic and as a preference, the final weight is computed as
the sum of their weights, i.e. weight = w + w/2.

The experiment was performed on the sample of 10 000 job offer pairs.
Figure 6.10 depicts the change in the similarity estimation caused by em-
ploying the user model (200 pairs depicted for illustration).

The employed user model influences the computed similarity in two ways.
If the compared properties are similar (i.e., for high values of the similarity
measure) the personalized similarity increases towards higher values (a pos-
itive change in the figure), while if they are different, the personalized simi-
larity decreases to lower values (a negative change).

2Ontology-based User Model, http://nazou.fiit.stuba.sk/home/files/nazou_um.pdf

http://nazou.fiit.stuba.sk/home/files/nazou_um.pdf

78 6 Acquisition based on content analysis

-0,1

-0,05

0

0,05

0,1

0,15

0 50 100 150 200

Examined pair

Si
m

ila
rit

y
ch

an
ge

Figure 6.10: Change in similarity estimation caused by the employed user model.

6.6 Discussion

We described a method for the comparison of instances of ontological con-
cepts based on the recursive traversing of an instance’s structure. The final
similarity is the aggregate result of the individual similarities computed for
particular properties while their type is considered to select a suitable sim-
ilarity metric for each property. The introduction of similarity metrics for
properties allows us to take advantage of semantics provided by ontologi-
cal representation, which allowed us to extend similarity with personalized
weights reflecting users’ individuality.

In the following text we compare proposed method to existing approaches.
A method computing semantic similarity among instances within an ontol-
ogy, which considers ontology and context layers, is described in [1]. The data
layer estimates similarity by considering simple or more complex types, such
as integer and string. Distinguishing only numbers and strings in datatype
properties is not satisfactory (e.g., boolean values need to be treated care-
fully). We propose datatype similarity metrics that deal with all types of
datatype properties as defined by XML Schema. The ontology layer exploits
relations between entities in the ontology and the context layer assesses the
similarity according to how the entities are used in some external contexts.
Considering the context, there are three operations which influence semantic
similarity — cardinality, intersection and similarity of/between properties or
relations. The total similarity measure is a weighted combination of external
and extensional similarity. The external similarity employs structural aspects
of instances in the comparison (classes and slots which instances belong to
are investigated), whereas the extensional similarity performs comparison in
term of the instances’ properties and relations.

6.6 Discussion 79

An approach to ontology matching based on instances is described in [51].
Its main idea is to derive similarity between concepts from the number of
shared instances, since the number of instances is usually greater than the
number of concepts. Moreover, using instances makes ontology matching
independent from concept names and other metadata. The novelty of this
approach is in using well known similarity metrics (baseline, minimum, dice
and kappa) from “traditional” ontology matching in instance-based ontology
matching. A combination of these metrics is used to improve the achieved
matching results. The best results were achieved as a union of the minimum
and kappa metrics. The drawback of this approach lies in the fact that
it only considers a given number of instances of the concept. Additionally,
properties assigned to the concept and their types (object or datatype) should
be considered to achieve more accurate similarity enumeration since extra
information about instances is provided. Another approach presented here is
matching based on metadata. Concepts are matched with regard to trigram
similarity of their names, though experiments showed that it is not very
effective due to the high diversity in the concept names.

PROMPT is an algorithm for ontology merging and alignment [62] that
guides the user in creation of a merged ontology. It starts with creating an
initial list of matches based on class names where linguistic similarity metrics
are employed. Afterwards, the user has two options: either to select one of
the suggestions provided by PROMPT or to use the editing environment
to perform one’s own changes in the ontology. The next step consists of
automatic operations based on the previous choice. These steps are repeated
in cycles. When a conflict occurs, a list of solutions is provided. PROMPT
performs the merging of concepts, properties, relations between concepts and
properties, and copies parts of a hierarchy (classes including their parents
etc.). We consider name matching as a drawback of the algorithm since
names of the concepts do not have to necessarily carry meaning, especially
when automatic approaches are used to build or populate an ontology.

A two phase method for instance comparison of tourism ontology concepts
is described in [35]. The first phase performs concept preprocessing. Two
graphs are built — an inheritance graph that organizes ontological concepts
according to the generalization hierarchy and a similarity graph in which
nodes relate to concepts and edges correspond to the degree of similarity.
The similarity itself is enumerated in the second phase consisting of three
steps. First, flat structural similarity is computed exploiting structural slots
(part, related, predicate). Second, hierarchical structure is exploited by us-
ing results from the previous step and extending them by further elements
according to the hierarchical relationships. In the third step, the final sim-

80 6 Acquisition based on content analysis

ilarity measure between concepts is computed as a result of combination of
two previous steps. The advantage of this approach is that total similarity for
more than two concepts can be expressed as one number. Furthermore, the
similarity of concepts from different contexts can be computed as well. The
main drawback of this method is that a similarity ontology holding similar-
ity relations between properties and entity names from the domain ontology
must be provided in order for the similarity graph to be built.

The comparison with an “ideal” instance related to a particular domain
is used in a search method based on user criteria [66]. The method also
supports search for instances that do not entirely satisfy the criteria of the
ideal offer. The similarity of particular properties of the offer is enumer-
ated as the distance between their values. The computed distances are later
converted to a degree of similarity taking into account the largest possible
distance. To distinguish between particular properties, precision is intro-
duced that reflects a user’s subjective tolerance. Furthermore, the user is
allowed to specify for each criterion, its importance and whether it has to be
satisfied. This approach is aimed at searching similar instances according to
a user’s given criteria, however, unlike our approach, it computes asymmetric
similarity.

A common property of the aforementioned approaches is that they do
not investigate the causes of similarity. Automated similarity enumeration
mimics the human similarity measure if different strategies are used based on
clusters of users [13]. Users gave reasons of their assessments which were the
basis for machine learning algorithms that assigned users to specific clusters.
We use an automated approach to figure out reasons of similarity, which also
contributes to the scrutability of the user model [48].

Chapter 7

Maintenance of user
characteristics based on spreading
activation

The method presented in this chapter was proposed in coopera-
tion with Michal Šimún as a part of his master thesis and was
supervised by author of this work.

While a user works with a concept1 (e.g., job offer, learning text) character-
istics for that concept (e.g., estimated interest) can be obtained. In some
application domains there may be a logical connection between concepts and
other parts of the domain model expressed by defined relationships. This is
obvious in educational domains where prerequisites can be defined and thus
their fulfillment is a necessary condition for further studies. In such domains
it is also reasonable to model user characteristics for parts of the domain
model that user has not visited yet.

With regard to defined connections among the concepts in the domain
model, we spread a change to other related parts of the domain model, even
when the user has not worked with these parts. In this chapter we describe
a method for maintenance of user characteristics that uses spreading activa-
tion. Spreading activation principle originates from psychological studies of
human memory operations.

The principle is based on an idea that initial energy (activation) of a se-
lected node (in a graph) is spread to other nodes and can be summarized
as follows [28]: The network data structure consists of nodes interconnected
by links. The nodes may represent objects or features of “real world” ob-
jects, and are usually labeled. The links model relationships between objects

1The concept is in the meaning as defined in the Section 3.1.

81

82 7 Maintenance based on spreading activation

or features of objects. The links may be labeled and/or weighted and usually
have directions, reflecting on the relationship between the connected nodes.
The spreading is iterative. The iteration consists of one or more pulses and
a termination check. Each pulse is made up of three stages: preadjustment,
spreading and postadjustment. The first and third phase allows control over
the activation (i.e., decay or retention) whereas spreading phase consists of
the flow of activation waves from one node to all other nodes connected to it.

Our method was primarily proposed for an educational domain where
relationships among concepts and their fragments are better defined than for
the concepts involving a job offer domain. However, the proposed method is
not restricted to be used only in the educational domain.

7.1 Models of adaptive web-based educational
system

In the personalization process it is desirable knowing document’s attributes
(educational content) in an educational course (domain model) and also
user’s characteristics (user model) [20]. Domain model specifies characteris-
tics of an educational course including learning materials. In this section we
provide examples based on learning programming which presents the basis for
domain model structuring. To support educational process (independently
from a domain) it is important to take into account the individual learner,
i.e. personalization. Learner’s characteristics are mapped on characteristics
of educational materials and express the semantics of educational materials.
Therefore, the domain (and user) model is using ontology representation [2].
The developed model is an extension of the model described in [17]. Beside
structural changes we provide following unique features:

− relationships defining a dependence between domain model parts and
required knowledge, i.e. prerequisites (necessary for a learner to be
able master particular knowledge and skills expressed in educational
documents) and knowledge acquired while studying; and

− parts defining explanation, tests and other types of learning objects
that are useful for better structuring of the domain.

Existing domain models usually consist of mutually interconnected learning
objects that represent learning materials [23]. Metadata connected to learn-
ing objects allows reasoning while taking into account learner’s knowledge

7.1 Models of adaptive web-based educational system 83

with regard to the particular learning object. Having reusability of the mod-
els in mind we divide the domain model into a knowledge item space and
a learning object space. The elementary structure of the domain model is de-
picted in Figure 7.1. Different arrows in the figure express variety of relations
that can be used in a domain model.

Knowledge
item 3

Knowledge
item 6

Knowledge
item 2

Knowledge
item n

Knowledge
item 4

Knowledge item space

Learning
object 1

Learning
object 2

Learning object
space

...

Knowledge
item 1

Knowledge
item 5

Learning
object 3

Learning
object m

Figure 7.1: Structure of the domain model.

Learning object space

The learning object space consists of learning objects and relationships among
them. This part of the domain model meets the standard view of the domain
model for adaptive web-based systems. A learning object contains identifying
characteristics (name and description) and domain attributes, such as diffi-
culty level, programming language, etc. We have designed following types of
learning objects:

− course — encapsulate the entire educational course as a unit;

− programming learning object — encapsulates definition of all learning
objects in the learning programming domain; and

− fragment — defines smaller parts which a learning object can possibly
consist of.

Programming learning object can be defined as explanation, exercise, tem-
plate or simple text [54]. Furthermore, it can contain following fragments
which are related to programming exercises that represent primarily content
for learning programming in our courses:

84 7 Maintenance based on spreading activation

− definition of the learning object of each type;

− hint that may help to achieve solution in the exercise;

− proper solution of the exercise; or

− note as an additional information to the example.

Programming learning objects are assigned to corresponding learning objects
in a course. A structure of the educational course is specified by a hierarchy
relation defined between learning objects (content) and relations that speci-
fies assignment of a learning object to a knowledge item (relate). Hierarchical
relations allow defining structure of the course (sections and subsections).

Knowledge item space

A knowledge item (KI) represents a topic or a key word that represent key
terms of the domain. Its aim is a categorization of available learning ob-
jects into knowledge items according to learning goals of particular learning
objects. Examples of knowledge items can be found in the Figure 7.3. We
have added knowledge item level to the domain model to be able to model
personalization also at the knowledge items level. Introducing knowledge
items allows modeling user’s characteristics on the level of knowledge items.
It allows determining user’s characteristics for all learning objects related to
the knowledge item.

Our approach also supports changing learner’s characteristics for the
learning objects, even in the case they have not been visited yet, as a knowl-
edge item can be connected to learning objects using following relations:

− prerequisite — specifies parts of knowledge item space which a learner
has to master (at least at defined level) to be able to comprehend
the knowledge item. Furthermore, a prerequisite can be specified as
required (logical AND) or optional (OR) with defined level of its ful-
fillment;

− contain — defines hierarchical relations between knowledge items, i.e.
parts which a knowledge item consist of can be defined; or

− isRelatedTo — defines logical relations between knowledge items.

7.1 Models of adaptive web-based educational system 85

The user model

Personalization in an educational course is based on recommendation of suit-
able learning objects to an individual user (learner) who is represented in the
user model. We use an overlay user model that models the relation of the
user to the individual parts of domain model. The developed user model is
influenced by work presented in [24]. It consists of a domain independent part
(GenericUserCharacteristic in the Figure 7.2) and a domain dependent part
(EducationalSpecificCharacteristic). The domain-dependent part consists of
records about user’s visits, interests and knowledge in current educational
course. An example of a domain independent characteristic is learner’s name
whereas a user’s level of knowledge is example of domain dependent charac-
teristics.

DomainSpecificCharacteristic

EducationalSpecificCharacteristic

isa

UserCharacteristic

hasTimeStamp Integer

hasConfidence Integer

hasSource String

hasCountOfUpdates Integer

GenericUserCharacteristic

isa

LearningObject

DomainSpecificUser

EducationalSpecificModel
isa

StudentInterest

isa

StudentKnowledge

isa

StudentActivity

isa

KnowledgeItem

User

includes Instance* DomainSpecificUser

hasUserCharacteristic Instance GenericUserCharacteristic

includes*hasUserCharacteristicisa

hasInterestOfhasKnowledgeOf

hasEducationalSpecificCharacteristic*

Figure 7.2: Structure of the user model.

This way we define user’s relation to individual knowledge items and
learning objects in the domain model. The knowledge characteristic consists
of three parts:

− level is expressed as a real number from the range 〈0, 1〉 that specifies
a level at which the user has mastered that characteristic;

86 7 Maintenance based on spreading activation

− probability expresses how likely modeled value match the real user; and

− view specifies the strategy which is used to adjust level and probability.
A characteristic can be defined in several views and its final value is
computed as a combination of used views.

For instance, the view feedback handles a setting of the characteristic by the
user, classified is an evaluation of the characteristic from the activity with
the learning object, and inferred is spreading of the characteristic from other
parts of domain model.

Each characteristic in the user model has assigned a timestamp (time
of the last change), confidence, number of changes and source that made
a change of the characteristic (see Figure 7.2). Confidence expresses belief
about match between real user characteristic and modeled characteristic.

7.2 Maintenance of the user characteristics
by spreading change

While a user works with a learning object we obtain his/her characteristics
for that learning object (e.g., estimated interest). Since there is a connection
between learning objects and other parts of the domain model we spread
a change to other related parts of the domain model even though the user
has not worked with these parts yet. Modeling user’s characteristics consists
of the following steps:

1. Setting characteristics for actual learning object (e.g., Example with
I/O operations in the Figure 7.3) — with regard to user’s activity with
the learning object we can find out user’s interest and knowledge for
that learning object.

2. Spreading changes of characteristic’s values from the actual learning
object to knowledge items (i.e., knowledge item Display and Scan).

3. Spreading changes of characteristic’s values from the knowledge item
(Scan and Display) to other related parts of knowledge item space
(Input/Output and Files).

4. Spreading changes of characteristic’s values from the knowledge items
which characteristics have been changed to related learning objects
(i.e., Example with writing to file and Example with displaying items of
array).

7.2 Maintenance of the user characteristics by spreading change 87

Display

Control
structures

Files

Arrays

Scan

Knowledge item space

Example with
writing to file

Example with I/O
operations

Example with
displaying items

of array

... ...

Input/Output

contain

prerequisite relate

isRelatedTo

Cycle

Data
structures

Explanation of
cycle

File System

contain

contain

Step 1

Step 4

Step 3

Step 2

Learning object
space

Figure 7.3: Sequence of steps in process of change of characteristic.

Step 1: Setting characteristics for actual learning object

The user model stores information about learner’s activities and his/her es-
timated knowledge and interests. Learner’s activity contains records about
visited learning objects in a course. Knowledge and interest can have vari-
ous assigned views while each view defines a strategy for characteristics with
regard to their update. Furthermore, the interest and knowledge have as-
signed:

− value, which is numerically expressed knowledge or interest from an
interval of available values (e.g., interval from 0 to 1 for knowledge,
where 1 reflects level of expert whereas 0 is none); and

− probability of modeled value which is a measure how likely a real value
of user’s characteristic matches a modeled value of the characteristic.

By analyzing learner’s activity we can directly change the following views for
actual learning object:

− feedback — a user adjusts interest and knowledge in a graphical user
interface directly. Selected value is set in the user model for actual
learning object in feedback view with probability equal 1; and

− classification — every defined level of the characteristic (e.g., expert)
creates a class of the classification. According to selected strategy
a model of classifier is created that assigns a user into one of defined
classes in regard to user’s activity. Variety of classifiers can be used
(e.g., content-based learning classifier).

88 7 Maintenance based on spreading activation

After a characteristic’s update is accomplished it is necessary to summa-
rize values of particular views and also take into account their confidence.
The final combined value of the characteristic char (U ,LO , combined) of
learning object LO for user U is evaluated as follows:

char (U ,LO , combined) =

=

∑
∀V ∈Views

confidence (V)× char (U,LO, V)× probability (char (U,LO, V))∑
∀V ∈Views

confidence (V)× probability (char (U,LO, V))
, (7.1)

where V stands for a view from the set of Views , char is characteristic’s value
in the user model, notation of confidence and probability is as we defined
before. Confidence of the particular views is specified in a configuration
file. The probability of a characteristic is modeled by normal distribution of
values.

We use two characteristics of distribution — the mean of the distribu-
tion expressing characteristic’s value and functional value of the mean spec-
ified by probability of modeled characteristic’s value of the user. Modeling
probability allows for specifying probability for the entire range of available
values. For instance, if we model knowledge and its value is 0.9 with prob-
ability of 1 then from the distribution the probability of expert knowledge
(value 1) can be computed. The probability of characteristic’s final value
probability (char (U,LO, combined)) is computed as follows:

probability (char (U,LO, combined)) =

=

∑
∀V ∈Views

confidence (V)× fprob (char (U,LO, V))

max

(∑
∀V ∈Views

confidence (V) , 1

) , (7.2)

where the meaning of char and confidence is the same as in Equation 7.1,
fprob (char (U,LO, V)) expresses functional value of characteristic’s normal
distribution for the computed characteristic’s value and models estimation
of probability of used view for computed characteristic’s value.

The statement in the denominator assures that combination of views with
low confidence defines a characteristic with lower probability.

7.2 Maintenance of the user characteristics by spreading change 89

Step 2: Spreading changes of characteristic’s values
to knowledge items

After user’s characteristic is changed (its value and probability) for a learning
object with defined feedback view it is needed to accomplish relevant change
also for all other knowledge items which this learning object belongs to.
For instance, if a user studied a learning object focused on cycles in Java
it is desirable to increase knowledge for the knowledge item Cycle. In the
Figure 7.4 for the learning object Example on cycle value of a characteristic
with the feedback view was changed (e.g., interest).

Explanation
of cycle

Cycle

Example on
printing arrays

Example
on cyclerelevance

relevance

relevance

Arrays
relevance

Figure 7.4: Spreading a change from learning object to knowledge item.

This learning object is a source of spreading change of the characteristic
and the change is spread to related knowledge item (i.e., Cycle). The value
of characteristic for knowledge item is computed from all related learning ob-
jects (Explanation of cycle, Example on cycle, Example on printing arrays).
Characteristic’s value for related knowledge item is computed using all re-
lated learning objects that have initialized a characteristic with the feedback
view.

The characteristic’s value char (U,KI, feedback) for the user U with the
feedback view for the knowledge item KI is influenced by weighting of learning
object’s characteristics related to the knowledge item:

char (U,KI, feedback) =∑
∀LO∈related KI

char (U,LO, feedback)× probability (char (U,LO, feedback))× rel (LO, KI)∑
∀LO∈related KI

probability (char (U,LO, feedback))× rel (LO, KI)

where related describes relation between a learning object and KI with rel-
evance rel, char is a characteristic’s value with defined view and probability
is probability of the value.

90 7 Maintenance based on spreading activation

Afterwards, the probability of computed characteristic’s value for the
knowledge item needs to be estimated. We use the same method as we de-
scribed in Step 1 while confidence is computed from relevance of the relation
between the learning object and the knowledge item. When a characteristic
is changed, combined view at the characteristic needs to be computed as
described in Step 1.

Step 3: Spreading changes in knowledge item space

Since modeled knowledge items are mutually related it is desirable to take
into account a change of characteristic in the knowledge item also in other
related knowledge items. Therefore, spreading of this characteristic with
combined view in the knowledge item space is accomplished. Spread user’s
characteristic is set in the inferred view in other knowledge items. Spread-
ing a change of a characteristic for knowledge and interest is accomplished
through the modeled relations between knowledge items (i.e., isRelatedTo,
prerequisite, contain).

Spreading a user’s characteristic to other knowledge items is based on
spreading activation principle [28] where energy is spread from the selected
node to other nodes, while with the increasing distance it fades. The energy
E of the node j , which is spread from the node i , is computed as follows:

Ej = Ej + wij × fD (i, j)× Ei, (7.3)

where wij is weight of relation between the nodes, fD expresses the distance
and Ei is the energy of the node, from which the spreading comes. After-
wards, the activation for the nodes with changed energy is computed.

In our approach we spread a change of the characteristic. Energy is
represented as a couple value and its probability, where

value = char(U,KI, combined). (7.4)

Characteristic’s value with combined view of user U for knowledge item KI

and probability of this value is spread from knowledge items (nodes in the
knowledge space) assigned to the actual learning object.

In the spreading activation process there are three factors that need to
be considered:

− way of activation fading;

− summing of activation; and

− activation function for a node of knowledge items network.

7.2 Maintenance of the user characteristics by spreading change 91

Activation fading is accomplished by sequentially decreasing the value of
the probability (decreasing global maximum of probability in normal distri-
bution). If the node i has energy at the level of Ei = (value, probability), then
after the spreading activation to the node j is Ej = (value, fD(probability)),
where fD is function of the distance. In the case when the energy is spread to
the node j from more nodes simultaneously then the final energy is computed
as follows:

Ej =
∑

i inferTo j

(valuei , probabilityi) (7.5)

whereas value and probability are computed as follows:

valuej =

∑
∀i inferredTo j

valuei × probabilityi∑
∀i inferredTo j

probabilityi

(7.6)

probabilityj =
∑

∀i inferredTo j

fprobi
(valuej) (7.7)

where fprobi expresses the functional value of normal distribution for the com-
puted value.

Activation of the node j , which energy Ej was spread into, is computed
as Aj = f (Ej), while f expresses linear function in the range 〈0, 1〉. Here,
activation of the node j is defined as a probability of the characteristic of the
inferred type for the node j (i.e., its value is equal valuej).

We use the principle of spreading activation to spread a change of the
interest and knowledge in the knowledge item space. The interest is spread
through the isRelatedTo relation and knowledge through the prerequisite re-
lation. In the following text we focus on updating of knowledge that can be
changed using spreading activation and/or prerequisites.

Spreading knowledge (interest)

The spreading activation is used to change user’s estimated knowledge (in-
terest) level in a graph where relations express a relevance among knowledge
items according to the knowledge (or interest). We use hierarchical relations
between knowledge items to specify from which items selected knowledge
item consists of (if spreading interest we use also relation isRelationTo). In
the Figure 7.5 there is an example on spreading of the interest and decreasing
intensity of the spreading is expressed by the fading color.

92 7 Maintenance based on spreading activation

Iterative cycle

Programming languages
characteristics

Cycle

Recursion

Branching

contain

contain

contain

If

Switch

contain

contain

Control structures

contain

1st iteration (source)
dist = 1

2nd iteration
dist = 2

2nd iteration
dist = 2.5

3rd iteration
dist = 3

3rd iteration
dist = 3.5

4th iteration
dist = 4.5

4th iteration
dist = 4

contain

4th iteration
dist = 4.5

Figure 7.5: Example on spreading user’s interest in the programming course.

When changing the knowledge we take into account also parts which
knowledge item is related to. Therefore, the spreading activation is oriented
towards the parents. For activation fading we use the exponential descending
function. We use the same function for activation fading of the interest as
well. In the case of spreading a change of knowledge it descends steeper be-
cause of spreading the knowledge to lower amount of nodes and the influence
of a node is lower for nodes that are further.

Spreading prerequisites

Prerequisites define which knowledge items a learner has to know (at re-
quested level) to be able study educational materials related to selected
knowledge item. Thus, if the learner is an expert in some area (expressed
by the knowledge item) we can infer that he/she probably knows item’s pre-
requisites at least at required level. A change of knowledge can be spread
only from the knowledge items where user’s knowledge is at the expert level
(equals 1) and probability is greater than defined threshold. The reason is
that only in this case we can reason that user knows this knowledge item and
fulfils all prerequisites. In the opposite case, we do not know what caused
decreased value of knowledge whether failure in prerequisites or misunder-
standing of presentation. Two types of prerequisites are possible:

− required (and) — any prerequisite has to be fulfilled; or

− optional (or) — at least one prerequisite has to be fulfilled.

7.2 Maintenance of the user characteristics by spreading change 93

If a prerequisite of the “and” type occurs, knowledge is spread to its pre-
requisites with energy (its value is relevance of the prerequisite) and proba-
bility (its value is probability of spreading activation). A prerequisite should
achieve at least a minimal requested level of knowledge with probability to
be allowed to say whether a user’s level of knowledge is at expert level in this
prerequisite. An example on required prerequisite is shown in the Figure 7.6.
First, spreading starts in the node B which knowledge is 1.0 with probability
0.8. Since we assume that the user is an expert for item B with probability
greater than defined threshold we start spreading knowledge into the node
A, which knowledge has not been set yet. In the second step the value of
knowledge for node A is adjusted and probability is the same as in node B.

B

A

C

1st step:
Knowledge = 1.0
Probability = 0.8

0.6

2nd step:
Knowledge = 0.6
Probability = 0.8

AND

Figure 7.6: Spreading knowledge over required prerequisite.

In the case of prerequisite “or” we can not say with certainty which of the
prerequisites a user used during studies. Therefore, probability spread from
the node with this prerequisite is split into same parts among all prerequisites
of the “or” type.

The last step in the process of spreading knowledge through the prereq-
uisites is setting the knowledge with the inferred view in prerequisites. This
process is identical with the spreading a change of interest.

Step 4: Spreading changes from knowledge items
to learning objects

The process of changing user’s characteristics in the domain model ends by
spreading activation of a characteristic’s change from the knowledge item
space to the learning object space. After the change of value and probability
of a characteristic for the knowledge item occurs it is necessary to process
the change of the characteristic for all learning objects in the learning object
space that have assigned selected knowledge item.

This way is spread a characteristic with combined view to a characteristic
with inferred view from the knowledge item and this view is sequentially
combined into a final characteristic with a combined view for the learning

94 7 Maintenance based on spreading activation

object. The described principle of changing a characteristic is identical with
spreading a characteristic in opposite direction from step 1.

A characteristic’s value for a respective learning object is computed from
the characteristics of all related knowledge items that have initialized the
characteristic. The value of the inferred view of a characteristic for user U

and learning object LO is computed from characteristics to which a learning
object is assigned. Afterwards, the probability of a characteristic’s value is
computed for processed knowledge item.

When a described change of a characteristic is accomplished it is necessary
to update a combined view at the characteristic according to equation defined
in step 1.

7.3 Evaluation

For the evaluation process a simple programming course was created. It con-
sisted of 16 learning objects containing simple text, exercise and explanation
types. Knowledge items, which learning objects are assigned to, come from
ACM classification2. The knowledge item space contains 1 476 topics and
4 keywords added specially for our course.

We developed an adaptive web-based educational application that recom-
mends learning objects according to defined domain model. The user model
is created automatically based on user’s activity (i.e., number of learning
object’s visits, time spent by reading, interest). Ontology representation is
used for the domain (and user) model. Content of the educational course is
stored separately from the domain model in relational database structures.

The application is built on three architectural layers — user, application
and data. The data layer contains learning materials (stored in relational
database), semantics of the course — domain ontology and user’s character-
istics (both in OWL DL). An access to ontologies is provided through the
Sesame framework. The application layer is responsible for maintenance of
user’s characteristics using our method and is implemented in Java SE 6.
The user layer is implemented in JRuby3 and it is responsible for generat-
ing views in the educational course and acquiring information about user’s
activities. Data about user’s actions are processed at the application layer.

In the evaluation we concentrate on validation of the correctness of achie-
ved results and time demands. We describe the evaluation on spreading
interest which is performed on actual learning object with regard to user’s

2ACM classification, http://www.acm.org/about/class/1998/
3JRuby, http://jruby.codehaus.org/

http://www.acm.org/about/class/1998/
http://jruby.codehaus.org/

7.3 Evaluation 95

feedback and consequent spreading of changes in the domain model. The
interest gets a value from the range −3 (the lowest user’s interest) to 3 (the
highest interest).

The evaluation starts with the empty user model (i.e., with no initialized
characteristics). We gradually set user’s interest to 3 (to observe changes of
interest for actual learning object), then to 2 (to observe spreading change
and combination with previous value of interest) and at last to −3 (to verify
changes also for negative values). In the first experiment, the interest was
adjusted for the actual learning object and afterwards it was spread to re-
spective knowledge items, then continued spreading in the knowledge item
space and, at last, spreading of interest continued to respective learning ob-
jects for changed knowledge items. In the second experiment the value of
interest influenced by its initial value (i.e., from first experiment) is tested.
Spreading negative interest was successfully accomplished the same way as
in the first experiment.

To evaluate time demands we measured time during spreading interest
and knowledge in the domain model. The results are depicted in the Fig-
ure 7.7. The most time expensive is the first experiment, since data acquired
from the ontology has not been loaded to cache memory.

0,0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1,0

1 2 3
experiment

tim
e

[s
]

interest
knowledge

Figure 7.7: Evaluation of the time demands.

In the second experiment the spreading was performed through the same
path (i.e., sources of spreading were connected to the same knowledge items)
what led to decreased time demands. Spreading in the third experiment was
led through a different path and acquiring additional information from the
ontology caused increased time demands.

To find out dependence between time demands and number of learning
objects in a course we performed another two measurements. We used our

96 7 Maintenance based on spreading activation

test course (with 16 learning objects) and added other 10 and 20 learning ob-
jects with connections to all knowledge items in the course to spread changes
to all new learning objects. The achieved results are depicted in Figure 7.8.

0,0

0,2

0,4

0,6

0,8

1,0

1,2

16 26 36

learning objects number

tim
e

[s
]

interest
knowledge

Figure 7.8: Dependency of learning objects number and time for first spreading in
domain model.

After adding new learning objects, the first three steps of the spreading
are not influenced. The change appears in the fourth step, where changes
are spread from knowledge items to (new) learning objects.

7.4 Discussion

Personalized approach to learners provides a way to improve educational
process in e-learning courses. It is based on information about learner but
this information is subject of change. We described our extension of the
domain model so that it enables more accurate adaptation using two related
parts — knowledge item space and learning object space as well as that it can
be reused across several educational applications. The domain model and the
user model are represented by an ontology and different types of relationships
between information contents are defined. An idea of distinguishing types
of links between information contents in educational applications and to use
ontology to represent links is described in [5]. The advantage of such an
approach is in potential subsequent adaptive behavior that can be added to
the hypermedia structure and it fosters consistency in linking practices.

There are several ways to model characteristics in a user model. Mostly
used are stereotype (e.g., Multibook [71]) or layered (e.g., AHA! [30], Net-
Coach [77]) user models. In Multibook learners are divided into groups
(stereotypes) according to a selected difficulty level of a course while each

7.4 Discussion 97

learner is assigned to one stereotype only and is provided with studying ma-
terials belonging to the particular stereotype. The stereotype can be changed
after successfully passed test. Domain model uses several relationships be-
tween information concepts to generate presentation (e.g., superconcept, fol-
lows, problemsolution). However, the presentation is adjusted to a stereotype
not to a particular user.

In layered user model user’s characteristics are modeled according to ed-
ucational documents in particular course. In this case evaluation of user
characteristics’ for a visited document and for related parts of the course
(characteristic propagation) is provided. Actualization of a characteristic for
the course can be based on rules defined by author of the course [30] or on
analysis of learner’s activity.

An alternative approach to rule based adaptation in educational hyper-
media systems is described in [45]. The proposed alternative sequencing
method, instead of generating the learning path by populating a concept
sequence with available learning resources based on pre-defined adaptation
rules, it first generates all possible learning paths that match the learning
goal in hand, and then, adaptively selects the desired one, based on the use
of a decision model that estimates the suitability of learning resources for
a targeted learner. The proposed methodology generates almost accurate se-
quences avoiding the need for defining complex rules. Unlike our approach,
content to be presented is selected according to the suitability function that
estimates the suitability of a learning object for a specific learner. We adjust
characteristics and then provide the user/learner with the content with the
highest relevance.

AHA! provides a propagation of a characteristic’s change to other parts
of a course via prerequisite relationships between concepts [30]. The propa-
gation is based on author’s defined rules. Defining rules for each document
(or type of documents) is complicated and time consuming. Furthermore,
maintenance of the rules is necessary anytime a new document is added and
relations with other documents need to be updated. We use spreading acti-
vation to spread (i.e., propagate) a change of characteristics among concepts
without involvement of the author.

Personal Reader is an experimental environment supporting personalized
learning based on semantic web technologies [34]. The prototype allows pro-
viding, annotating and recommending learning material suitable for specific
courses in an e-learning context. The user model (here learner profile schema)
provides slots for information about a learner and is represented as a RDF
document [42]. Provided recommendations are personalized according to the
current learning progress of the user. The entire process of recommending is

98 7 Maintenance based on spreading activation

driven by rules. These rules query for resources and metadata, and reason
over distributed data and metadata descriptions.

Our method uses overlay user model and maintenance of user’s charac-
teristics is based on spreading activation, i.e. we employed structure of the
domain model to spread changes of user characteristics. Our approach al-
lows modeling user characteristics in the entire domain model and not only
in the parts that the user has already visited, thus, it provides more accurate
recommendations of learning objects to achieve more effective education.

Part IV

Outlook

99

Chapter 8

Contributions

Proper personalization requires a sufficiently populated user model. The user
changes as he/she works with the application (e.g., gains new knowledge).
Therefore, the user model should always reflect these changes to be a re-
liable source for personalization. There are several methods (e.g., implicit
or explicit feedback) that can be used. Main contribution of this work is
a proposal of three novel methods to automatic acquisition and maintenance
of user characteristics that employ semantics provided by ontological rep-
resentation. Another contribution of this work is its aim at the methods
for acquisition and maintenance of user characteristics. Currently, there is
less attention paid to these problems (in comparison to adaptive navigation
and presentation) in the adaptive hypermedia field. One of the reasons is
that changes of the user model are rather considered as a support for the
personalization and are not directly visible on presentation layer.

Method for acquiring user characteristics based on questions

The method is aimed at acquisition and maintenance of user characteris-
tics using questions generated in the natural language (here English). The
advantage of the method is that questions are generated automatically for
concepts from the domain model and afterwards answers are transformed
into characteristics in the user model. The entire process (i.e., when and
what question needs to be generated) is driven by user defined rules that can
be restricted by question’s priority.

The method was evaluated using the job offer and scientific publications
domain ontology using our software prototype ExACT (Explicit Actualizer).
The templates were proposed with regard to their universality. We designed
7 templates for the job offer domain. These templates allow generating ques-
tions for 22 characteristics. For the scientific publications domain we pro-

101

102 8 Contributions

posed 3 templates which allow generating 5 questions. The small amount of
templates (questions) in this domain is influenced by straightforward struc-
ture of the domain. The prototype uses ontology models that were developed
in the course of the projects NAZOU and MAPEKUS. The projects resulted
in two pilot applications. However, the prototype was not incorporated into
the final pilot applications because it was implemented in the early stages of
the projects using different technologies as the pilot applications. Incorporat-
ing the prototype into the pilot applications would require time consuming
refactoring of the source codes.

The method as it is proposed is not suitable for processing characteristics
where two independent instances need to be created since we expect in the
question one name of a characteristic, e.g. we wanted to generate a ques-
tion in the travel ontology to find out user’s opinion about accommodation
(represented by class Accommodation) in a particular destination (class Des-
tination).

Method for acquiring user characteristics
based on content analysis

The method is aimed at comparison of instances of ontological concepts and
is based on the recursive traversing of an instance’s structure. The final
similarity is the aggregate result of the individual similarities computed for
particular properties while their type is considered to select a suitable sim-
ilarity metric for each property. The introduction of similarity metrics for
properties allows us to take advantage of semantics provided by ontologi-
cal representation, which allowed us to extend similarity with personalized
weights reflecting users’ individuality.

We have developed the software tool ConCom (Concept Comparer) that
automates the proposed method. ConCom supports the computing of two
kinds of similarity — either for all properties or only for properties that
are common for both compared instances. Our experiments showed that
similarity where all properties are considered is more suitable for discovering
user characteristics, while similarity computed for common properties only
better mimics the similarity estimated by real users.

Furthermore, we investigated reasons (properties) that influenced user
evaluation of content (e.g., interest). We introduced two threshold values
used to discover a user’s likes and dislikes. From the personalization perspec-
tive we were only interested in the two outer sets — positive and negative
items. The thresholds were set experimentally for the job offers application
domain — the positive threshold to 0.65 and negative threshold to 0.25. The

103

identified properties can be used by other tools for actualization of charac-
teristics in the user model or for the acquisition of new ones.

The method of the recursive evaluation implemented in the ConCom tool
is universal and exploits ontological structure of the concept. It is based on
acquiring properties and instances (literals) which are connected. Therefore,
it can be used also in other application domains. However, in some cases it
might be desirable to add additional metrics to achieve better results or to
deal with particularities typical for processed domain.

The tool was incorporated into the pilot application that was developed in
the course of the research project NAZOU. The tool was being implemented
at the time of finishing the pilot application of the project. Therefore, only
the part that computes the similarity (without involving the user) is incor-
porated and it is used to recommend similar instances to a given instance.

Method for maintenance of user characteristics
based on spreading activation

The method is aimed at maintenance of user’s characteristics where spreading
activation is used. Information about the user is in the user model expressed
as knowledge or interest about particular learning objects. We developed
a prototype of an adaptive web-based educational application that recom-
mends learning objects from the domain model. The educational course was
used because relationships among learning objects and their fragments are
better defined here than for instance in job offer domain. However, the pro-
posed method use is not restricted to only an educational domain. The pro-
totype was implemented in the course of the PeWePro project. This project
is still in progress and the prototype is being incorporated along with other
prototypes into a portal solution that is aimed at learning programming.

We described our extension of domain model that enables more accurate
adaptation using two related parts — knowledge item spaces and learning
object spaces — that can be reused across several educational applications.
The course consisted of 16 learning objects containing simple text, exercise
and explanation types. Knowledge items, which learning objects are assigned
to, came from ACM classification. Knowledge item space contained 1 476
topics and 4 keywords added especially for our course.

Benefit of this approach is in changing user’s characteristics in the entire
domain model and not only in the parts that the user has already visited.
Results of our method are used in the process of personalization and thus
more accurate recommendation of learning objects is performed what helps
to achieve more effective education.

104 8 Contributions

The described methods (including implementation of the respective software
tools) were proposed and evaluated in the course of the following research
projects:

Project NAZOU: Tools for Acquisition, Organisation, and Maintenance of
Knowledge in an Environment of Heterogeneous Information Resources
(1025/2004)

Project leader: Pavol Návrat for STU

Supported by: State programme of research and development “Estab-
lishing of Information Society”

Duration: September 2004 – May 2008

Project MAPEKUS: Modeling and Acquisition, Processing and Employing
Knowledge about User Activities (APVT-20-007104)

Project leader: Mária Bieliková

Supported by: Slovak Research and Development Agency

Duration: January 2005 – April 2008

Project PeWePro: Adaptive web-based portal for learning programming
(KEGA 3/5187/07)

Project leader: Mária Bieliková

Supported by: Cultural and Educational Grand Agency of the Ministry
of Education of Slovak Republic

Duration: January 2005 – December 2009

Models of software systems in the semantic web environment
(VEGA 1/3102/06)

Project leader: Pavol Návrat

Supported by: Scientific Grant Agency of the Ministry of Education of
Slovak Republic and the Slovak Academy of Sciences

Duration: January 2006 – December 2008

Bibliography

[1] Riccardo Albertoni and Monica De Martino. Semantic similarity of
ontology instances tailored on the application context. In On the
Move to Meaningful Internet Systems 2006: CoopIS, DOA, GADA, and
ODBASE, volume 4275, pages 1020–1038. Springer Berlin / Heidelberg,
2006.

[2] Anton Andrejko, Michal Barla, and Mária Bieliková. Ontology-based
user modeling for web-based information systems. In Wita Wojtkowski,
W. Gregory Wojtkowski, Jože Zupancic, Gabor Magyar, and Gabor
Knapp, editors, Advances in Information Systems Development, New
Methods and Practice for the Networked Society, volume 2, pages 457–
468. Springer Science+Business Media, New York, 2007.

[3] Anton Andrejko, Michal Barla, and Michal Tvarožek. Comparing onto-
logical concepts to evaluate similarity. In Pavol Návrat, Pavol Bartoš,
Mária Bieliková, Ladislav Hluchý, and Peter Vojtáš, editors, Tools for
Acguisition, Organisation and Presenting of Information and Knowl-
edge: Research Project Workshop, pages 71–78, Bystrá dolina, Nízke
Tatry, 2006.

[4] Ion Androutsopoulos, Spyros Kallonis, and Vangelis Karkaletsis. Ex-
ploiting OWL ontologies in the multilingual generation of object de-
scriptions. In Proceedings of the 10th European Workshop on Natural
Language Generation, page 150–155, Aberdeen, Scotland, 2005.

[5] Miguel Ángel Sicilia, Elena García, Paloma Díaz, and Ignacio Aedo.
Using links to describe imprecise relationships in educational contents.
International Journal for Continuing Engineering Education and Life-
long Learning, 14(3):260–275, 2004.

[6] Grigoris Antoniou and Frank van Harmelen. A Semantic Web Primer.
The MIT Press, Cambridge, Massachusetts, 2004.

105

106 Bibliography

[7] Liliana Ardissono and Pietro Torasso. Dynamic user modeling in a web
store shell. In 14th European Conference on Artificial Intelligence, pages
621–625, Berlin, Germany, 2000.

[8] Franz Baader, Deborah L. McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider. The Description Logic Handbook: Theory, Implemen-
tation, and Applications. Cambridge University Press, 2003.

[9] Michal Barla and Mária Bieliková. Estimation of user characteristics
using rule-based analysis of user logs. In Data Mining for User Modeling:
Proceedings of Workshop held at UM2007, pages 5–14, 2007.

[10] Shlomo Berkovsky. Decentralized mediation of user models for a better
personalization. In V. P. Wade, H. Ashman, and B. Smyth, editors,
Adaptive Hypermedia and Adaptive Web-Based Systems, AH 2006, vol-
ume LNCS 4018, page 404–408, Dublin, Ireland, 2006. Springer.

[11] Shlomo Berkovsky, Tsvi Kuflik, and Francesco Ricci. Mediation of user
models for enhanced personalization in recommender systems. User
Modeling and User-Adapted Interaction, 18(3):245–286, 2008.

[12] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web.
Scientific American, 284(5):34–43, 2001.

[13] Abraham Bernstein, Esther Kaufmann, Christoph Bürki, and Mark
Klein. How similar is it? towards personalized similarity measures in
ontologies. In Otto K. Ferstl, Elmar J. Sinz, Sven Eckert, and Tilman
Isselhorst, editors, 7th International Conference Wirtschaftsinformatik
(WI-2005), page 1347–1366, Bamberg, Germany, 2005. Physica-Verlag.

[14] Mária Bieliková. Presentation of adaptive hypermedia on the web. In
Lubos Popelínský, editor, DATAKON 2003, pages 72–91, Brno, Czech
Republic, 2003.

[15] Mária Bieliková and Rastislav Habala. University course support by
web-based adaptive e-board. In F. Jakab, L. Samuelis, I. Sivý, and
M. Bučko, editors, ICETA 2004, page 395–402, Košice, Slovak Republic,
2004.

[16] Mária Bieliková and Jaroslav Kuruc. Sharing user models for adap-
tive hypermedia applications. In ISDA 2005, pages 506–511, Wroclaw,
Poland, 2005. ACM Press.

Bibliography 107

[17] Mária Bieliková and Michal Moravčík. Modeling the content of adaptive
web-based system using an ontology. In Proceedings of 1st International
Workshop on Semantic Media Adaptation and Personalization SMAP
2006, pages 115–120, Athens, Greece, 2006. IEEE Computer Society.

[18] Mária Bieliková and Pavol Návrat. Modeling and acquisition, process-
ing and employing knowledge about user activities in the internet hy-
perspace (in slovak). In Znalosti 2007: Proceedings of the 6th annual
conference, pages 368–371, Ostrava, Czech Republic, 2007.

[19] Gilles Bisson. Why and how to define a similarity measure for object
based representation systems. In Towards Very Large Knowledge Bases,
page 236–246. IOS Press, Amsterdam, 1995.

[20] Peter Brusilovsky. Methods and techniques of adaptive hypermedia.
User Modeling and User-Adapted Interaction, 6(2-3):87–129, 1996.

[21] Peter Brusilovsky. Adaptive and intelligent technologies for web-based
education. Special Issue on Intelligent Systems and Teleteaching, 4:19–
25, 1999.

[22] Peter Brusilovsky. Adaptive hypermedia. User Modeling and User-
Adapted Interaction, 11(1-2):87–110, 2001.

[23] Peter Brusilovsky. Developing adaptive educational hypermedia sys-
tems: From design models to authoring tools. In S. Blessing, T. Mur-
ray, and S. Ainsworth, editors, Authoring Tools for Advanced Technology
Learning Environments, pages 377–409. Dordrecht: Kluwer Academic
Publishers, 2003.

[24] Peter Brusilovsky, John Eklund, and Elmar Schwarz. Web-based ed-
ucation for all: A tool for developing adaptive courseware. Computer
Networks and ISDN Systems, 30(1-7):291–300, 1998.

[25] Peter Brusilovsky and C. Tasso. Preface to special issue on user mod-
eling for web information retrieval. User Modeling and User-Adapted
Interaction, 14(2-3):147–157, November 02, 2004 2004.

[26] Charles Callaway and Tsvi Kuflik. Using a domain ontology to mediate
between a user model and domain applications. In Peter Brusilovsky,
Charles Callaway, and Andreas Nürnberger, editors, Workshop on New
Technologies for Personalized Information Access, pages 13–22, Edin-
burgh, Scotland, UK, 2005.

108 Bibliography

[27] Cristina Carmona and Ricardo Conejo. A learner model in a distributed
environment. In Paul De Bra and Wolfgang Nejdl, editors, Adaptive Hy-
permedia and Adaptive Web-Based Systems: Third International Con-
ference, AH 2004, volume 3137 of Lecture Notes in Computer Science,
pages 353–359, Eindhoven, The Netherlands, 2004.

[28] Fabio Crestani and Puay Leng Lee. Searching the web by constrained
spreading activation. Information Processing Management, 36(4):585–
605, 2000.

[29] Alexandra Cristea and Paul De Bra. ODL education environments based
on adaptivity and adaptability. In Proceedings of the AACE E-Learn
2002, pages 232–239, Montreal, Canada, 2002.

[30] Paul De Bra, Ad Aerts, Bart Berden, Barend de Lange, Brendan
Rousseau, Tomi Santic, David Smits, and Natalia Stash. AHA! the
aadaptive hypermedia architecture. In ACM Conference on Hypertext
and Hypermedia, pages 81–84, Nottingham, UK, 2003.

[31] Ronald Denaux, Lora Aroyo, and Vania Dimitrova. An approach for
ontology-based elicitation of user models to enable personalization on
the semantic web. In Special interest tracks and posters of the 14th
international conference on World Wide Web, pages 1170–1171, Chiba,
Japan, 2005. ACM Press.

[32] Li Ding, Pranam Kolari, Zhongli Ding, and Sasikanth Avancha. Us-
ing ontologies in the semantic web: A survey. In Raj Sharman, Rajiv
Kishore, and Ram Ramesh, editors, Ontologies: A Handbook of Prin-
ciples, Concepts and Applications in Information Systems, volume 14,
page 79–113. Springer, 2007.

[33] Peter Dolog and Mária Bieliková. Hypermedia systems modeling frame-
work. Computers and Infromatics, 21(3):221–239, 2002.

[34] Peter Dolog, Nicola Henze, and Wolfgang Nejdl. The personal reader:
Personalizing and enriching learning resources using semantic web tech-
nologies. In Proc. of the AH 2004, pages 85–94. Springer Verlag, 2004.

[35] Anna Formica and Michele Missikoff. Concept similarity in symontos:
An enterprise ontology management tool. Computer Journal, 45(6):583–
594, 2002.

Bibliography 109

[36] Fausto Giunchiglia, Mikalai Yatskevich, and Pavel Shvaiko. Semantic
matching: Algorithms and implementation. In Journal on Data Seman-
tics IX, pages 1–38. Springer Berlin/Heidelberg, 2007.

[37] Gustavo González. Towards Smart User Models for Open Environments.
PhD thesis, University of Girona, 2003.

[38] T. R. Gruber. Towards principles for the design of ontologies used for
knowledge sharing. In Nicola Guarino and R. Poli, editors, Formal On-
tology in Conceptual Analysis and Knowledge Representation, Deventer,
The Netherlands, 1993. Kluwer Academic Publishers.

[39] Stefan Haustein and Jörg Pleumann. Easing participation in the seman-
tic web. In International Workshop on the Semantic Web 2002, Hawaii,
2002.

[40] Dominik Heckmann, Tim Schwartz, Boris Brandherm, Michael Schmitz,
and Margeritta von Wilamowitz-Moellendorff. GUMO — the general
user model ontology. In Liliana Ardissono, editor, Proceedings of the 10th
International Conference on User Modeling (UM’2005), LNAI 3538,
pages 428–432, Edinburgh, UK, 2005. Springer-Verlag Berlin Heidel-
berg.

[41] Albrecht Heeffer. Negative numbers as an epistemic difficult concept:
Some lessons from history, 2008. [Online; accessed February 3rd, 2008].
http://logica.ugent.be/albrecht/thesis/HPM2008.pdf.

[42] Nicola Henze and Marc Herrlich. The personal reader: A framework for
enabling personalization services on the semantic web. In Proceedings of
the Twelfth GIWorkshop on Adaptation and User Modeling in Interactive
Systems (ABIS 04, 2004.

[43] Matthew Horridge, Holger Knublauch, Alan Rector, Robert Stevens,
and Chris Wroe. A practical guide to building OWL ontologies using
the protégé-OWL plugin and CO-ODE tools edition 1.0, 2004. [Online;
accessed February 3rd, 2008]. http://www.co-ode.org/resources/
tutorials/ProtegeOWLTutorial.pdf.

[44] Yannis Kalfoglou and Marco Schorlemmer. Ontology mapping: The
state of the art. The Knowledge Engineering Review, 18(1):1–31, 2003.

[45] Pythagoras Karampiperis and Demetrios Sampson. Adaptive learning
resources sequencing in educational hypermedia systems. Educational
Technology & Society, 8:128–147, 2005.

http://logica.ugent.be/albrecht/thesis/HPM2008.pdf
http://www.co-ode.org/resources/tutorials/ProtegeOWLTutorial.pdf
http://www.co-ode.org/resources/tutorials/ProtegeOWLTutorial.pdf

110 Bibliography

[46] Alenka Kavcic. The role of user models in adaptive hypermedia sys-
tems. In 10th Mediterranean Electrotechnical Conference MEleCon 2000,
Lemesos, Cyprus, 2000.

[47] Judy Kay. The um toolkit for cooperative user modelling. User Mod-
elling and User-Adapted Interaction, 4:149–196, 1995.

[48] Judy Kay. Stereotypes, student models and scrutability. Lecture Notes
in Computer Science, 1839:19–30, 2000.

[49] Judy Kay. User modeling for adaptation. In Constantine Stephanidis,
editor, User Interfaces for All, Human Factors Series, pages 271–294,
Florence, Italy, 2000.

[50] Judy Kay and Andrew Lum. Ontology-based user modeling for the
semantic web. In 10th International Conference on User Modeling
(UM’05): Workshop 8, pages 11–19, Edinburgh, Scotland, 2005.

[51] Toralf Kirsten, Andreas Thor, and Erhard Rahm. Instance-based match-
ing of large life science ontologies. In Data Integration in the Life Sci-
ences, volume 4544, pages 172–187. Springer Berlin/Heidelberg, 2007.

[52] Alfred Kobsa. User modeling: Recent work, prospects and hazards.
In M. Schneider-Hufschmidt, T. Kühme, and U. Malinowski, editors,
Adaptive user interfaces: Principles and practice, pages 111–128, Ams-
terdam, North-Holland, 1993.

[53] Alfred Kobsa. Generic user modeling systems. User Modeling and User-
Adapted Interaction, 11:49–63, 2001.

[54] Radovan Kostelník and Mária Bieliková. Web-based environment us-
ing adapted sequences of programming exercises. In M. Beneš, editor,
ISIM 2003: Proceedings of Information Systems Implementation and
Modelling, pages 33–40, Brno, Czech Republic, 2003. MARQ Ostrava.

[55] Geert-Jan M. Kruijff. Context-sensitive utterance planning for CCG.
In Proceedings of the 10th European Workshop on Natural Language
Generation, page 83–90, Scotland, 2005.

[56] Deborah L. McGuinness and Frank van Harmelen. Owl web ontology
language: W3c recommendation 10 february 2004, 2004. [Online; ac-
cessed July 7th, 2008]. http://www.w3.org/TR/owl-features/.

http://www.w3.org/TR/owl-features/

Bibliography 111

[57] Stuart Edward Middleton. Capturing knowledge of user preferences with
recomender systems. PhD thesis, University of Southampton, 2003.

[58] David Milward and Martin Beveridge. Ontology-based dialogue sys-
tems. In 18th International Joint Conference on Artificial Intelligence
(IJCAI03): 3rd Workshop on Knowledge and Reasoning in Practical
Dialogue Systems, 2003.

[59] Pavol Návrat, Mária Bieliková, and Viera Rozinajová. Acquiring, or-
ganising and presenting information and knowledge from the web. In
CompSysTech’06. Bulgarian Chapter of ACM, 2006.

[60] István-Tibor Nébel, Barry Smith, and Ralf Paschke. A user profiling
component with the aid of user ontologies. In Workshop Learning, Teach-
ing, Knowledge, Adaptivity, Karlsruhe, 2003.

[61] Natalya Fridman Noy. Semantic integration: A survey of ontology-based
approaches. ACM SIGMOD Record, 33(4):65–70, 2004.

[62] Natalya Fridman Noy and Mark A. Musen. PROMPT: algorithm and
tool for automated ontology merging and alignment. In Proceedings
of the Seventeenth National Conference on Artificial Intelligence and
Twelfth Conference on Innovative Applications of Artificial Intelligence,
pages 450–455. MIT Press/AAAI Press, 2000.

[63] Leo Obrst. Ontologies for semantically interoperable systems. In Pro-
ceedings of the twelfth international conference on Information and
knowledge management, pages 366–369, New Orleans, LA, USA, 2003.
ACM Press.

[64] M. O’donnell, C. Mellish, J. Oberlander, and A. Knott. ILEX: an archi-
tecture for a dynamic hypertext generation system. Natural Language
Engineering, 7(3):225–250, 2001.

[65] Harrie Passier and Johan Jeuring. Ontology based feedback generation
in design-oriented e-learning systems. In Proceedings of the IADIS In-
ternational conference, e-Society, volume II, pages 992–996, 2004.

[66] René Pázman. Ontology search with user preferences. In Pavol Návrat,
Pavol Bartoš, Mária Bieliková, Ladislav Hluchý, and Peter Vojtáš, ed-
itors, Tools for acquisition, organization and presenting of information
and knowledge: Research project workshop, page 139–147, 2006.

112 Bibliography

[67] René Pázman. Values normalization with logic programming. In Pavol
Návrat, Pavol Bartoš, Mária Bieliková, Ladislav Hluchý, and Peter Vo-
jtáš, editors, Tools for acquisition, organization and presenting of in-
formation and knowledge: Research project workshop, pages 134–141,
Horský hotel Poľana, Slovakia, 2007.

[68] Roy Rada, Hafedh Mili, Ellen Bicknell, and Maria Blettner. Develop-
ment and application of a metric on semantic nets. IEEE Transactions
on Systems, Man, and Cybernetics, 19(1):17–30, 1989.

[69] Philip Resnik. Semantic similarity in a taxonomy: An information-
based measure and its application to problems of ambiguity in natural
language. Journal of Artificial Intelligence Research, 11:95–130, 1999.

[70] Elaine Rich. User modeling via stereotypes. In Readings in intelligent
user interfaces, pages 329–342. Morgan Kaufmann Publishers Inc., 1998.

[71] Cornelia Seeberg, Achim Steinacker, Klaus Reichenberger, Abdulmo-
taleb El Saddik, Stephan Fischer, and Ralf Steinmetz. From the user’s
needs to adaptive documents. In Proceedings of the Integrated Design &
Process Technology Conference, pages 226–238, 2000.

[72] Rudi Studer, V. Richard Benjamins, and Dieter Fensel. Knowledge en-
gineering: Principles and methods. Data Knowledge Engineering, 25(1-
2):161–197, 1998.

[73] Peter Tiňo and Gabriela Polčicová. Topographic organization of user
preference patterns in collaborative filtering. Neural network world,
13(3):311–324, 2003.

[74] Michal Tury and Mária Bieliková. An approach to detection ontology
changes. In ICWE ’06: Workshop proceedings of the sixth international
conference on Web engineering, Palo Alto, California, 2006. ACM Press.

[75] Amos Tversky. Preference, Belief, and Similarity: Selected Writings.
MIT Press, 2003.

[76] Robin van Meteren and Maarten van Someren. Using content-based
filtering for recommendation. In G. Potamias, V. Moustakis, and M. van
Someren, editors, ECML/MLNET Workshop on Machine Learning and
the New Information Age, pages 47–56, Barcelona, Spain, 2000.

[77] Gerhard Weber, Hans christian Kuhl, and Stephan Weibelzahl. Develop-
ing adaptive internet based courses with the authoring system netcoach.

Bibliography 113

In Proceedings of the Third Workshop on Adaptive Hypermedia, AH2001,
pages 226–238. Springer, 2001.

[78] Hongjing Wu, Geert-Jan Houben, and Paul De Bra. Supporting user
adaptation in adaptive hypermedia applications. In On-line Conference
and Informatiewetenschap 2000, De Doelen, Rotterdam, 2000.

[79] Michael Yudelson, Tatiana Gavrilova, and Peter Brusilovsky. Towards
user modeling meta-ontology. In Liliana Ardissono, Paul Brna, and An-
tonija Mitrovic, editors, User Modeling 2005: 10th International Confer-
ence, UM 2005, pages 448–452, Edinburgh, Scotland, UK, 2005. Lecture
Notes in Computer Science.

Appendix A

About the author

Anton Andrejko was born in Stropkov, Slovakia
on July of 26th, 1980. He received his Master
degree in Industrial engineering from Techni-
cal University in Košice, Faculty of Electrical
Engineering and Informatics in 2004. He is
presently a PhD student at Slovak University
of Technology, Faculty of Informatics and In-
formation Technologies. He works in the field
of user modeling and personalization.

In the period of October 2005 through
September 2008 he worked as a researcher at
Faculty of Informatics and Information Technologies and cooperated on
several research projects. Within this period he published several papers,
namely 1 paper in a journal, 8 papers at international conferences and work-
shops, chapters in 2 books and 13 papers at local or national conferences.
The full list of publications is in Appendix B.

He was a member of the organizing committee for the Znalosti 2008 con-
ference. He also participated in organizing meetings for the Personalized Web
group held at Faculty of Informatics and Information Technologies in period
of 2005–2008. His others interests include typography, proper publishing and
digital photography.

115

Appendix B

Publications by author

Journals

1. Anton Andrejko and Mária Bieliková. Comparing instances of onto-
logical concepts for personalized recommendation in large information
spaces. Computing and Informatics. To appear.

International Conferences

2. Anton Andrejko and Mária Bieliková. Personalized Comparing In-
stances of Domain Ontology Concepts. In Phivos Mylonas, Manolis
Wallace, and Marios Angelides, editors, Proceedings of SMAP 2008 —
3rd International Workshop on Semantic Media Adaptation and Per-
sonalization, pages 76–81, Prague, Czech Republic, 2008. CS IEEE
Press.

3. Anton Andrejko and Mária Bieliková. Investigating similarity of on-
tology instances and its causes. In Vera Kurkova, Roman Neruda,
and Jan Koutnik, editors, Artificial Neural Networks — ICANN 2008,
LNCS 5164, pages 1–10, Prague, Czech Republic, 2008. Springer.

4. Michal Šimún, Anton Andrejko, and Mária Bieliková. Maintenance of
learner’s characteristics by spreading a change. In Learning to Live
in the Knowledge Society, volume 281 of IFIP International Federation
for Information Processing, pages 223–226. Springer Boston, 2008.

5. Peter Bartalos, Michal Barla, György Frivolt, Michal Tvarožek, Anton
Andrejko, Mária Bieliková, and Pavol Návrat. Building ontological
base for experimental evaluation of semantic web applications. In

117

118 B Publications by author

J. van Leeuwen, G.F. Italiano, W. van der Hoek, C. Meinel, H. Sack,
and F. Plášil, editors, SOFSEM 2007, LNCS 4362, pages 682–692.
Springer, 2007.

6. Anton Andrejko, Michal Barla, and Mária Bieliková. Ontology-based
user modeling for web-based information systems. In Wita Wojtkowski,
W. Gregory Wojtkowski, Jože Zupancic, Gabor Magyar, and Gabor
Knapp, editors, Advances in Information Systems Development, New
Methods and Practice for the Networked Society, volume 2, pages 457–
468. Springer Science+Business Media, New York, 2007.

7. Anton Andrejko, Michal Barla, Mária Bieliková, and Michal Tvarožek.
User characteristics acquisition from logs with semantics. In ISIM 2007
Information Systems and Formal Models: 10th International Confer-
ence on Information System Implementation and Modeling, pages 103–
110, 2007.

8. Michal Šimún, Anton Andrejko, and Mária Bieliková. Ontology-based
models for personalized e-leraning environment. In ICETA 2007: 5th
Internation Conference on Emerging e-Learning Technologies and Ap-
plications, pages 335–340. Elfa, Stará Lesná, Slovak Republic, 2007.

9. Mária Bieliková, Jaroslav Kuruc, and Anton Andrejko. Learning
Programming with Adaptive Web-Based Hypermedia System AHA!.
In ICETA 2005: 4th Internation Conference on Emerging e-Learning
Technologies and Applications, pages 251–256. Elfa, Košice, Slovak
Republic, 2005.

Chapters in books

10. Mária Bieliková, Pavol Návrat et al. Selected software engineering
studies 1 (in Slovak): Advanced methods of designing program systems.
Edition of research texts in in-formatics and information technologies,
232 pages. Faculty of informatics and information technologies STU
Bratislava, 2006, ISBN 80-227-2464-5.

11. Mária Bieliková, Pavol Návrat et al. Selected software engineering
studies 2 (in Slovak): Advanced methods of designing program systems.
Edition of research texts in in-formatics and information technologies,
226 pages. Faculty of informatics and information technologies STU
Bratislava, 2006, ISBN 80-227-2531-5.

119

Local and National Conferences

12. Anton Andrejko and Mária Bieliková. Estimating similarity of the
ontological concepts instances for the adaptive applications based on
Semantic Web (in Slovak). In V. Snášel, editor, Znalosti 2008: Pro-
ceedings of the 7th annual conference, pages 30–41. STU, Bratislava,
2008.

13. Michal Šimún, Anton Andrejko, and Mária Bieliková. Initialization
and actualization of the user model in job offers search on the Web (in
Slovak). In Znalosti 2007: Proceedings of the 6th annual conference,
pages 109–120. VŠB-Technická univerzita Ostrava, 2007.

14. Anton Andrejko and Mária Bieliková. Comparing Instances of the On-
tological Concepts. In Pavol Návrat, Pavol Bartoš, Mária Bieliková,
Ladislav Hluchý, and Peter Vojtáš, editors, Tools for acquisition, or-
ganization and presenting of information and knowledge (2): Research
project workshop, pages 26–35, Horský hotel Poľana, Slovakia, 2007.

15. Tomáš Klempa, Anton Andrejko, and Mária Bieliková. Maintenance of
user characteristics in the user model based on generating questions ac-
cording to domain ontology concepts (in Slovak). In Peter Vojtáš, edi-
tor, ITAT 2007: Informačné technológie — Aplikácie a Teória: Zborník
príspevkov prezentovaných na pracovnom seminári ITAT Poľana, pages
3–8, Poľana, Slovakia, 2007.

16. Anton Andrejko and Mária Bieliková. Estimating similarity of the on-
tological concepts instances for personalization purposes (in Slovak). In
F. Babič and J. Paralič, editors, WIKT 2007 Proceedings: 2nd Work-
shop on Intelligent and Knowledge oriented Technologies, pages 46–49.
Technická univerzita, Košice, 2008.

17. Anton Andrejko, Michal Barla, Mária Bieliková, and Michal Tvarožek.
Software tools for acquisition of user characteristics. In P. Vojtáš,
T. Skopal, editors, Datakon 2006, Proceedings of the Annual Database
Conference, pages 139–148. Brno, Czech Republic, 2006.

18. Anton Andrejko, Michal Barla, and Michal Tvarožek. Comparing onto-
logical concepts to evaluate similarity. In Pavol Návrat, Pavol Bartoš,
Mária Bieliková, Ladislav Hluchý, and Peter Vojtáš, editors, Tools for
Acguisition, Organisation and Presenting of Information and Knowl-
edge: Research Project Workshop, pages 71–78, Bystrá dolina, Nízke
Tatry, 2006.

120 B Publications by author

19. Michal Tvarožek, Michal Barla, Mária Bieliková, Vladimír Grlickyý,
Anton Andrejko, Roman Filkorn, and Peter Bartalos. Presentation
and Personalization of Information in the Semantic Web. In Pavol
Návrat, Pavol Bartoš, Mária Bieliková, Ladislav Hluchý, and Peter Vo-
jtáš, editors, Tools for Acguisition, Organisation and Presenting of In-
formation and Knowledge: Research Project Workshop, pages 201–207,
Bystrá dolina, Nízke Tatry, 2006.

20. Ján Krausko, Michal Barla, Anton Andrejko. Semantic searching in
job offer domain (in Slovak). In ITAT 2006: Information Technolo-
gies — Applications and Theory: Workshop on Theory and Practice of
Information Technologies, pages 75–80, 2006.

Student Research Conferences

21. Anton Andrejko. Enumerating Similarity of Ontology Instances in
Regard to User Model. In M. Bieliková, editor, Student Research
Conference 2008: 4th Student Research Conference in Informatics and
Information Technologies, pages 142–149, STU, Bratislava, 2008.

22. Anton Andrejko. Ontological Concepts Similarity Influenced by the
User. In M. Bieliková, editor, Student Research Conference 2007: 3rd
Student Research Conference in Informatics and Information Technolo-
gies, pages 172–179, STU, Bratislava, 2007.

23. Anton Andrejko. Approaches to the User Modeling. In M. Bieliková,
editor, Student Research Conference 2006: Proceedings in Informatics
and Information Technologies, pages 160–167, STU, Bratislava, 2006.

24. Anton Andrejko. Improving Adaptive Hypermedia by Adding Seman-
tics. In M. Bieliková, editor, Student Research Conference 2005: Pro-
ceedings in Informatics and Information Technologies, pages 234–241,
STU, Bratislava, 2005.

Appendix C

Software tools for acquisition and
maintenance of the user model

C.1 Explicit Actualizer

Each record about the concept in the overlay user model needs to be initial-
ized before it is used and later needs to be maintained updated. Traditional
approaches to initialization and maintenance of the user model mostly con-
sider a closed information space and are proposed for the particular appli-
cation. We proposed a novel method for acquiring information for the user
model by asking questions.

Tool description

Experimental evaluation of the method for acquisition based on questions, as
described in Chapter 5, was performed using the software tool called Explicit
Actualizer (abbreviated ExACT). The tool’s specification is as follows:

Technologies used: Java, Apache Cocoon, Sesame repository

Inputs: User model, domain model, binding characteristics, templates with
vocabulary, rules

Outputs: Changes of characteristics in the user model

ExACT is a tool which is responsible for acquisition of information from
the user and their consequent transformation into characteristics in the user
model. When the tool is lunched for the first time a list of all possible
characteristics is created according to the domain model concept. The list is
ordered with regard to the priority of the characteristics. As the user works

121

122 C Software tools for acquisition and maintenance of the user model

with the application he/she is asked questions with respect to the predefined
rules. The questions with the higher priority are asked first.

User’s answer to a question is transformed into a characteristic in the
user model. In the case, when a respective characteristic already exists in
the user model, its value is updated to a newly acquired value from the user.
On the other hand, if the characteristic does not exist yet, a new instance is
created.

Configuring to other domains

When using ExACT in other application domains, more attention should be
paid especially to binding characteristics. Furthermore, it is necessary to
specify rules that are valid for selected application domain.

C.2 Concept Comparer

Many approaches acquire user characteristics for a user model to be pop-
ulated or kept up to date and this way provide a basis for successful per-
sonalization of visible aspects in adaptive web-based applications. Some
information can be acquired directly from the user (e.g., the user is asked
a question, fills in a form), observations of user’s behaviour while working
with the application, analysis of logs on the web server or analysis of the
presented content. We focus on the analysis of the presented content espe-
cially on evaluation of the similarity to find common or different aspects of
the content.

Tool description

Experimental evaluation of the method for acquisition based on a content
analysis, as described in Chapter 6, was performed using the software tool
called Concept Comparer (abbreviated ConCom). The tool’s specification is
as follows:

Technologies used: Java, Sesame repository

Inputs: URIs identifying instances in domain model, user model, similarity
metrics

Outputs: Quantitatively expressed similarity measure between instances

C.3 Student Model Updater 123

ConCom computes similarity measure for two instances of ontological con-
cepts given in the command line. The result is a similarity measure computed
using respective similarity metrics. Furthermore, ConCom provides an in-
terface that allows searching for the most similar instances to the given one.
ConCom uses Log4J1 logging utility and open source Similarity Measure
Library — SimMetrics2.

ConCom is not a standalone application as the tool is proposed to be
included in other applications/tools, which will call its interface methods.
The method of the recursive evaluation implemented in the ConCom tool is
universal and exploits ontological structure of the concept. It is based on
acquiring properties and instances (literals) which are connected. Therefore,
it can be used also in other application domains. However, in some cases it
might be desirable to add additional metrics to achieve better results or to
deal with particularities typical for processed domain.

Configuring to other domains

When using ConCom in other application domains, more attention should
be paid especially to inverse properties because they cause loops. Inverse
properties can be identified through owl:InverseOf property of OWL lan-
guage. However, query returns both, i.e. the property and its inverse prop-
erty. Therefore, it is necessary to fill in the list of inverse properties for given
domain in the configuration file to be ignored.

C.3 Student Model Updater

Learners have different knowledge, interests and goals and thus require per-
sonalized learning content. Personalization consists of two processes — esti-
mation of user’s characteristics in a user model and adjusting (or adaptation)
of the educational content according to modelled user’s characteristics. We
proposed a novel method for maintenance of user’s characteristics based on
spreading a change.

Tool description

Experimental evaluation of the method for maintenance of user character-
istics based on spreading, as described in Chapter 7, was performed using

1Log4J, http://logging.apache.org/log4j/
2SimMetrics, http://www.dcs.shef.ac.uk/~sam/simmetrics.html

http://logging.apache.org/log4j/
http://www.dcs.shef.ac.uk/~sam/simmetrics.html

124 C Software tools for acquisition and maintenance of the user model

the software tool called Student Model Updater (abbreviated SMUter). The
tool’s specification is as follows:

Technologies used: Java, XML (JAXB), Sesame repository

Inputs: User model, events reported from presentation layer — learning ob-
ject reading time, feedback from currently displayed learning object
(knowledge and interest)

Outputs: Changes of characteristics in user model

SMUter is a tool which responsible for changing values of user characteristics
in the user model. A user characteristic related to a particular concept
determines user characteristics for all learning objects which fall within the
scope of the concept. That means that we are able to estimate and maintain
learner’s characteristics also for the learning objects which have not been
visited yet.

While a user works with a learning object, SMUter collects his/her char-
acteristics for that learning object (e.g., estimated interest). Since there is
a connection between learning objects and other parts of the domain model,
we spread a change of the characteristic to other, related parts of the domain
model. SMUter is not a standalone application as the tool is proposed to be
included in an educational application or portal.

Configuring to other domains

SMUter was implemented with regard to the needs of the project PeWePro
and uses specific domain and user models from the project. An employment
of the tool in other application domains would require changes in the config-
uration file. Furthermore, if a new application domain uses different models,
appropriate modifications in the implementation are necessary.

Index 125

Index

adaptability, 12
adaptation, 11, 13, 23, 96

content, 14, 15, 23
methods, 14
navigation, 14, 23
presentation, 14, 15, 23
techniques, 14

adaptivity, 12

cardinality, 22, 63, 67
cold start, 29, 30, 36
collaborative filtering, 26, 27
concept, 13, 29
content-based filtering, 26

dataset, 65, 74

feedback, 16, 23, 37, 56, 75, 86, 87
author, 57
explicit, 27, 35, 37, 41, 59, 73
implicit, 35, 37, 41, 59, 73
semantic, 57
student, 57

heuristic, 63, 64, 66

information filtering, 26
interest, 24, 25, 27, 30, 37, 59, 81, 85,

86, 90, 91, 94

knowledge, 24, 85, 86, 90, 91
item, 84–86, 89–95

space, 83, 84, 90, 91, 93

learning object, 82–90, 93
space, 83, 93

mapping, 20, 34, 40, 63
metadata, 17–19, 79, 82
metric, 60, 61, 63–65, 69, 72, 78

datatype, 63, 66, 67
object, 65

model
adaptation, 12
context, 13
domain, 12
goal, 13
navigation, 12
teaching, 13
user, see user model

namespace, 17, 50, 52

ontology, 18–22, 32, 40, 46, 48, 50, 66,
82, 96

class, 19, 33, 50, 53, 65
concept, 19, 50, 60, 66
instance, 19, 50, 53, 60, 61, 69
literal, 21, 53, 61–64, 67, 69
property, 19, 33, 61, 63

datatype, 20, 33, 50, 62, 63
inverse, 62
object, 20, 33, 50, 53, 61, 63, 66
symmetric, 63

OWL, 32, 34, 69, 73, 94

personalization, 11, see adaptation,
23, 31, 34, 59, 85

preference, 24, 25, 27, 73

RDF, 17, 32, 50
recursion, 62, 67

126 Index

reusability, 83
rule, 46, 52, 53

shell, 23
similarity

matrix, 67
measure, 63
metric, see metric
semantic, 60

spreading activation, 81, 91–93, 97

taxonomy, 66
taxonomy distance, 66, 73
threshold, 67, 73

URI, 17
user characteristic, 13, 23, 31, 33, 34,

59, 84
acquisition, 31, 34–36, 39, 45, 53,

59
domain-dependent, 31
domain-independent, 31, 39
maintenance, 34, 35, 39, 45, 53,

81, 86
user model, 11, 13, 40, 46, 55, 77, 85

differential, 29
overlay, 13, 26, 29, 31, 36, 85
perturbation, 29
shared, 30, 34, 40
stereotype, 13, 26, 27, 36
strict, 29

vocabulary, 46–49

Web, 11, 16, 17, 31–34, 59
Adaptive Web, 11
Semantic Web, 12, 17, 33
Social Web, 12

XML, 17, 32, 49, 71

	I Setting the Stage
	Introduction
	Thesis objectives

	II Related Work and State of the Art
	Adaptive Semantic Web
	Models of adaptive web-based applications
	Adding semantics to adaptive applications
	Ontology as a mean for representation

	User modeling
	User characteristics
	Approaches to user modeling
	User model representation
	Acquisition and maintenance of user characteristics
	Open problems

	III Acquisition and Maintenance Methods
	Acquisition of user characteristics based on questions
	Principle of generating a question
	Binding characteristics
	Rules for question generation
	Evaluation
	Discussion

	Acquisition of user characteristics based on content analysis
	Recursive traversing of ontology instances
	Comparison metrics
	Similarity estimation
	Personalized similarity and user characteristics
	Evaluation
	Discussion

	Maintenance of user characteristics based on spreading activation
	Models of adaptive web-based educational system
	Maintenance of the user characteristics by spreading change
	Evaluation
	Discussion

	IV Outlook
	Contributions
	Bibliography
	About the author
	Publications by author
	Software tools for acquisition and maintenance of the user model
	Explicit Actualizer
	Concept Comparer
	Student Model Updater

