
Computing and Informatics, Vol. 28, 2009, 429–452, V 2009-Sep-16

COMPARING INSTANCES
OF ONTOLOGICAL CONCEPTS
FOR PERSONALIZED RECOMMENDATION
IN LARGE INFORMATION SPACES

Anton Andrejko, Mária Bieliková

Institute of Informatics and Software Engineering

Faculty of Informatics and Information Technologies

Slovak University of Technology in Bratislava

Ilkovičova 3, 842 16 Bratislava, Slovakia

e-mail: {andrejko, bielik}@fiit.stuba.sk

Revised manuscript received 24 February 2009

Abstract. We present a novel method for instance comparison of ontological con-
cepts with regard to personalized content presentation and/or navigation in large
information spaces. We assume that comparing properties of documents which users
found interesting leads to discovery of information about users’ interests specifically

when considering Semantic Web applications where documents or their parts are
represented by ontological concepts. We employ the ontology structure and differ-
ent similarity metrics for datatype and object properties and investigate reasons
behind user interest in the presented content. Moreover, we propose and evalu-
ate an approach to instance similarity computation for a particular user while also
considering the user’s individual preferences.

Keywords: Ontology, concept, instance, recursion, object property, datatype pro-
perty, similarity, metrics, personalization, user model, user characteristics

Mathematics Subject Classification 2000: 68T20, 68T30

1 INTRODUCTION

The amount of available information in large information spaces (e.g., the Web) is
continuously growing fast. Presently, most of the available information is provided

430 A. Andrejko, M. Bieliková

in a form primarily suitable for human beings, where the choice of its representation
and presentation is up to individual information providers. Obviously information
representation is not uniform for all providers, which causes problems for heteroge-
neous applications using various information sources.

We consider Semantic Web applications where metadata describes semantics
and ontologies are typically used for metadata representation and reasoning [7].
Although an ontology is defined as a shared conceptualization [27] a variety of
different ontologies describing the same application domain can exist. Thus some
means of ontology comparison are required for application and/or data integration.
The identification of their common and different aspects is the subject of research
in fields known as ontology mapping, merging and alignment.

In this process, instances can also be involved since it is up to the ontology
engineer whether a real-world object is conceptualized as a class or an instance
according to the purpose of the ontology. Recently, several approaches have emerged
that use ontological representation to store more complex objects but still do not
sufficiently address the processing of ontological concept instances. For example,
instance similarity could be used in several areas, e.g. clustering or ontological re-
pository maintenance.

The analysis of the content presented to users is a suitable source of informa-
tion [6] for personalized applications where the personalization of visible aspects
is usually based on user characteristics represented in a user model. To provide
proper personalization the user model needs to be populated with meaningful user
characteristics [26] that are up to date, which can be obtained explicitly from the
user (e.g., by filling forms) or by observing user behavior (implicit feedback), or by
data mining from activity logs.

If a user’s rating of the displayed content (i.e., user’s interest) is known we
can acquire some characteristics by employing content analysis in combination with
similarity. Since the rating varies, the similarity can be used to analyze the reasons
why it is low or high. For instance, let us consider job offers in the information
technology field. One can find hundreds of offers on the Web that advertise a position
for Java programmers requiring high school education with at least three years of
previous experience, knowing basics in Web technologies and providing a motivating
salary. If two offers are similar in all properties except the location (e.g., one in
London and one in Washington, D.C.) and have different ratings, the difference in
rating was likely caused by the location property. It is unimportant whether a user
from Europe prefers to work in Europe (high rating for job offer located in London)
or whether he or she is an adventurer who wants to try an overseas job (high rating
for Washington).

From different ratings given to different content we can deduce values of spe-
cific user characteristics and thus populate the user model. Higher value of interest
given to the offer located in Washington, D.C. could reveal that the location is
an important property for the user, while equivalent ratings given to different con-
tent could reveal that location is irrelevant for the user since it had no influence on
the ratings. While the presented examples were rather simple, more general infor-

Comparing Instances of Ontological Concepts 431

mation about user preferences can be discovered using more sophisticated heuris-
tics.

In this paper we present a method for the comparison of instances of ontological
concepts aimed at the identification of common and different aspects for perso-
nalization purposes. The method exploits the advantage of ontological information
representation and computes instance similarity with regard to particular properties
of concepts. In personalized applications where the user model is available, the
method also supports more accurate similarity computation for individual users
according to their characteristics.

The paper is structured as follows. In Section 2 we describe our method for
comparison of instances of ontological concepts. In Section 3 we present similarity
metrics employed in similarity estimation. Section 4 deals with the numerical esti-
mation of similarity and Section 5 presents our extension to similarity estimation
that takes into account user characteristics. In Section 6 we present the results of
evaluation, in Section 7 we give an overview of related work. Finally, Section 8
contains our concluding remarks.

2 COMPARISON BY RECURSIVE TRAVERSING

OF ONTOLOGY INSTANCES

In Semantic Web applications documents or their parts are represented via (hie-
rarchically organized) ontological concepts, which describe a set of real objects (i.e.,
concept instances) [9]. In our work we use the OWL Web Ontology Language1 for
ontology representation and particularly its DL sublanguage. Datatype and object

properties are used to assert specific facts about instances. Datatype properties
express relations between concept instances and RDF literals and XML Schema
datatypes. Object properties express relations between two instances.

We have proposed a domain independent method based on recursive evaluation
of instance properties to compute their similarity. Since the method was proposed
as a part of the NAZOU2 research project [20], we performed experiments in the job
offers domain. Therefore, we provide examples from the job offers domain (Figure 1)
and if necessary describe specifics of other application domains.

Rectangles used in Figure 1 represent instances of the concepts. Every such in-
stance has its unique identifier but we present only its label for clarity (e.g., Salary).
To distinguish between object and datatype properties a dashed line is used for the
datatype properties (e.g., maxAmount). JobOffer is the instance identifier which
several properties are connected to. For simplicity, we present only a few of them,
and surround multiple properties (e.g., hasPrerequisity) by a rounded box.

The main idea of the method is based on the evaluation of common property
pairs present in both instances. The rough principle of the method illustrating

1 OWL Web Ontology Language, http://www.w3.org/2004/OWL/
2 NAZOU – Tools for acquisition, organization and maintenance of knowledge in an en-

vironment of heterogeneous information resources, http://nazou.fiit.stuba.sk

432 A. Andrejko, M. Bieliková

String

Programmer/Analyst

Float

60.0

JobOffer Full timehasJobTerm

hasStartDate

Salary

hasSalary

US Dollar

isInCurrency
minAmount

maxAmount

hour

perPeriod

offersPosition

hasPrerequisite

String

...

hasText

String

Any VB6 and COM
experience is a big plushasText

Float

50.0

hasDutyLocation

Washington, D.C.

VB6 and COM

VBScript and HTML

ASP.NET

Date

2008-05-01

Fig. 1. A sample part of a job offer instance

comparison of two instances instanceA and instanceB is shown in Algorithm 1.
When comparing two instances of the concepts, properties can appear in different

cardinalities:

• single in both instances,

• multiple in both instances,

• single/multiple in one instance only.

When the property has a single occurrence in both instances (e.g., the hasStartDate

property), then the similarity of related elements (instances in the case of object
properties or literals in the case of datatype properties) is evaluated using different
similarity metrics. The comparison of datatype properties ends after a metric is
used to compute the similarity measure between the related literals. For object

properties a metric for related instances is computed (e.g., taxonomy distance) and
further comparison is performed recursively on the respective instances until literals
are reached or until there are no properties left.

When an instance is being traversed recursively, an inverse property can connect
it to an already traversed instance. For instance, Washington, D.C. is connected to
a job offer with the property hasDutyLocation. Since more than one job offer can

Comparing Instances of Ontological Concepts 433

Algorithm 1 Recursive method basics

function getSimilarity(instanceA, instanceB)
set similarity to 0.0
set counter to 0
store properties for instanceA and instanceB to properties

foreach property in properties do

increment counter
if property is in both instances then

store connected elements to elementX and elementY

add computeSimilarity(elementX , elementY) to similarity

else

add 0.0 to similarity

end if

end foreach

return similarity/counter

end function

function computeSimilarity(elementX , elementY)
if property is datatype then

return getDatatypeSimilarity(elementX , elementY)
else

set similarity to 0.0
add getObjectSimilarity(elementX , elementY) to similarity

add getSimilarity(elementX , elementY) to similarity

return mean value of similarity

end if

end function

be located in Washington, D.C., we require all of them to refer to the same instance
(e.g., Washington, D.C. isDutyLocationOf other job offers). Consequently, if we do
not consider inverse or symmetric properties, the algorithm will traverse them and
enter an infinite loop. Therefore, we filter out inverse and symmetric properties to
the examined property. However, loops can still occur, for example, if two different
properties lead to the same instance. In such cases, the already traversed instances
are omitted and further traversing stops.

Multiple occurrences of properties (e.g., hasPrerequisite property) in an instance
are the most complex case we have to address. In this case, two sets are constructed
which contain elements which are connected to the examined property in the first and
second instance, respectively. These two sets can have different cardinalities – the
problem is to identify (i.e., to match) similar elements between these two sets. We
use our similarity measure to identify such element pairs, which are then compared

434 A. Andrejko, M. Bieliková

and the computed similarity contributes to the total similarity between the two
instances. However, the identified pairs do not provide satisfactory results in some
cases. For example, if in the first instance the hasPrerequisite property has the
value “Java or C programming” and in the second instance multiple values “Java

programming” and “C programming” consistent results are difficult to achieve. In
our approach a pair with higher similarity according to the used similarity metric is
selected (i.e., similarity with only one property’s value from the second instances is
considered), but more complex heuristics can be proposed and employed to identify
a 1 : n mapping.

If single or multiple occurrence of a property occurs in one instance only, we
estimate similarity of values attached to the property as equal to zero. It is based
on the similarity definition, i.e. the similarity equals zero if two objects are entirely
different. Here we assume that instances are entirely different in the property, since
a value is assigned to the property in one instance only.

3 COMPARISON METRICS

A variety of comparison metrics can be used to compute similarities between in-
stances or literals connected to a property. We proposed two groups of metrics
with regard to a property’s type since they must be treated differently due to their
different nature – datatype and object metrics.

3.1 Datatype Metrics

To compute similarity between literals connected to a datatype property any string
based metrics can be used3. To achieve better results, the literal type should be
considered (e.g., simple string, date, number, logical value).

If the literal type is a logical value there are only two possible values that can
be set – true or false. Although the comparison of two logical values with any string
metrics as two strings would result in a value in the range 〈0, 1〉, the similarity of
two logical values can be either 1 or 0. Let x and y denote logical values. The
similarity measure for literals of logical type is computed as follows:

simlogical (x, y) =
{

1.0 x = y
0.0 otherwise.

(1)

Comparing literals of date and number type is strongly dependent on the applica-
tion domain and context. In an ancient history domain a time difference of two
centuries would likely be considered similar, while grocery expiration dates would
not. Therefore, we propose the following similarity metrics for date similarity:

3 A collection of methods suitable for string comparison is implemented in the open
source library SimMetrics, http://www.dcs.shef.ac.uk/∼sam/simmetrics.html

Comparing Instances of Ontological Concepts 435

simdate(x, y) =







0.0 |x − y| ≥ N

1.0 −
|x − y|

N
otherwise,

(2)

where x, y denote dates and N is a number expressing precision or time period
that is reasonable to be considered while comparing dates. N denotes the number
of the smallest time units that are still meaningful with regard to the chosen time
period. For instance, for a job offer, one year is a period that is still meaningful since
typical properties with date type values are the start date or the validity of an offer.
Therefore, N is set to 365 and absolute value of distance between the respective
dates is also expressed in the same units (here days).

Similar problems emerge when numbers are compared. Specifying precision (or
range) for numbers is difficult as we usually do not know what the range of compared
numbers is. Furthermore, it is likely that numbers will occur in one instance in
several contexts, i.e. in the job offer domain the number of working hours (dozens)
or the salary (dozens of thousands or even hundreds depending on the period) have
different possible ranges and units (e.g., hours, currencies).

However, this can be resolved if additional information about the range is
present, such as a property specifying the type of units. This can be helpful if
value normalization before comparison is performed and heuristics can be also used.
In [24] an approach is described which is aimed at the normalization of values that
are expressed in different units (e.g., the salary in various currencies). The approach
is based on logical programming and two implementations are provided – ASP and
Prolog. For normalization of values where different units were used employing Pro-
log is more suitable. In our experimental evaluation, we employed this approach to
normalize numeric values in our dataset.

Another problem that should be mentioned is that a number can occur in posi-

tive as well as negative form. People tend to think in positive numbers [14] which is
more natural. For instance, people do not say “I have gained minus 5 kilograms”,
but they automatically change statement to avoid using negative numbers to “I have
lost 5 kilograms”. Properties that get positive and also negative values are rarer than
properties getting either positive or negative values only. We consider the similarity
measure of two opposite numbers as equal to 0 because of their different nature.
Similarity between two numbers is expressed according to their distance but, in
particular cases, the context is also important, e.g. a difference of 2 degrees Celsius
when the temperature is 20 degrees is not quite the same as when the temperature
is 0 degrees when water in liquid state turns into ice. The similarity measure of two
numbers x and y that are both either positive or negative and considers particularity
of the job offer domain is computed as follows:

simnumerical (x, y) = 1.0 −
||x| − |y||

max (|x| , |y|)
. (3)

When comparing strings, a simple comparison provided by a default method in
any programming language (e.g., in Java) does not give satisfactory results. Me-

436 A. Andrejko, M. Bieliková

thods equals and equalsIgnoreCase are provided in Java implicitly but they return
a Boolean value instead of a similarity measure. To compare strings we employ
Levenshtein similarity metric from the SimMetrics library that uses decapitalised
strings as input.

3.2 Object Metrics

When computing the similarity of instances connected to an object property their
other characteristics can be considered (e.g., the number of related properties and
their types or the position in the taxonomy) [1, 25]. Since instances in ontologies
can belong to multiple classes simultaneously, one way of measuring the similarity
at the class level is to determine the number of common and different classes they
belong to. Consequently, if two instances belong to several classes simultaneously,
they are more similar than instances that have no common class (except the base
class, i.e. owl:thing).

Taxonomy distance is a heuristic similarity measure for evaluating similarity
between instances of the concepts that are connected to the object properties. Con-
cepts on higher level in the taxonomy are more general. A natural way to estimate
similarity in a taxonomy is to measure the distance between concepts to which the
compared instances belong.

The distribution of the concepts’ density is usually not balanced in is-a taxo-
nomy [25]. Also granularity in various parts is different, i.e. the distance of links
between concepts is not semantically uniform.

We assume that the closer instances are in the taxonomy the more similar they
are. The edge-counting method computes the shortest path between related concepts
and it is also known as common-ancestor specification. Distance is defined as the
shortest path going through a common ancestor or as the general shortest path, po-
tentially connecting two instances through common descendants/specializations [4].

These methods compute the distance in the taxonomy and do not capture dif-
ferences in taxonomy granularity. We introduce a taxonomy distance metric where
the similarity of instances increases based on how many common concepts they have
in the taxonomy. A combination of the number of common concepts with the depth
of the instances in the taxonomy is a way to consider granularity in the taxonomy
structure. When using this approach there is no need for further normalization of
the distance between instances to get a valid similarity measure.

Let us define a function depth(instance) expressing the depth from the root
concept in the taxonomy to the concept which a given instance belongs to. Let us
define a function CommonConcepts (instance1, instance2) that computes the num-
ber of concepts that have two instances in common in the paths leading from the
root concept to concepts which instance1 and instance2 belong to. The similarity
is computed as the number of common concepts in the taxonomy divided by the
number of concepts in the higher depth:

Comparing Instances of Ontological Concepts 437

simtaxonomy (instance1, instance2) =
CommonConcepts(instace1, instance2)

max (depth(instance1), depth(instance2))
. (4)

Two examples are depicted in Figure 2. The common concepts in the taxonomy are
emphasized by dotted arrows while solid arrows are used to show greater depth from
the root concept. For the left example simtaxonomy(instance1, instance2) = 2/4 = 0.5,
for the right example where both instances belong to the same concept in taxonomy
simtaxonomy (instance1, instance2) = 3/3 = 1.0.

instance1 instance1

instance2

instance2

2

4

3 3

Fig. 2. Example of taxonomy distance computed for instance1 and instance2

Another problem we encountered is the identification of relevant element pairs
in the case of multiple occurrences of a property. Each instance connected to an ob-
ject property in the ontology can have a label that could be compared employing
a datatype metric. However, solving the problem using only the label is not satisfac-
tory as labels are only optional and do not necessarily express semantics. Therefore,
they should be used very carefully (for automatically acquired instances it is obvious
that meaningful labels are not present).

To identify pairs of compared elements we construct a similarity matrix whose
size is specified by the cardinalities of the respective element sets. The matrix
holds similarities for each pair of elements from the sets. In the case of literals,
datatype metrics are used as described above. For instances connected to object
properties the recursive algorithm is employed. Afterwards, the identification of
relevant pairs is performed where the number of pairs is given by the cardinality of
the smaller set. Finding pairs with very low similarity measures can be prevented
by using a critical threshold value. The resulting algorithm for finding relevant pairs
is shown in Algorithm 2.

Leftover elements are handled in the same way as described above for elements
connected to a property that has occurrence in one instance only. An example of
finding pairs from the similarity matrix based on the described algorithm is shown
in Figure 3. Similarities used in the example are random numbers. In the first
iteration (left) at [A2 , B2] is the maximal value 0.9 and it is stored in the List. This
value corresponds to the similarity computed for a pair of elements. The value will
be used in the aggregation of the total similarity and other values on that row and

438 A. Andrejko, M. Bieliková

Algorithm 2 Finding relevant pairs

while count(pairs) < count(getSmallerSet(setA, setB)) do

set maxValue to getMaxValue(matrix)
store maxValue to List

set coordinates of maxValue to X and Y
foreach item in matrix do

if item.row = X or item.column = Y then

set item to null

end if

end foreach

end while

column are set to null (second row and second column). In the next iteration, the
maximal value 0.7 is at [A1 , B3], the last coordinate is [A3 , B4]. Element B1 is
evaluated as a leftover one.

0.3 0.8 0.7 0.3

0.7 0.9 0.3 0.5

0.3 0.1 0.4 0.6

0.9 0.3 null 0.7 0.3

null null null null

0.3 null 0.4 0.6

0.9

0.7

A1

A2

A3

B1 B4B3B2

Similarity matrix Similarity matrixList List

Fig. 3. Identifying relevant pairs from sets

4 SIMILARITY ESTIMATION

Similarity plays an important role in human life and in many cases people declare
judgments about objects without realizing similarity. Let us assume we have two
objects x and y. Formally we can define similarity between two objects as [5]:

• sim(x, y) ∈ [0..1],

• sim(x, y) = 1 → x = y: similarity of identical objects,

• sim(x, y) = 0: similarity of entirely different objects,

• sim(x, x) = 1: similarity is reflexive,

• sim(x, y) = sim(y, x): the similarity is symmetric,

• similarity and distance are mutually inverse,

• sim(x, z) ≤ sim(x, y) + sim(y, z): the triangle inequality.

There is a diversity in views at symmetry in similarity. Whereas according to [5]
the similarity is symmetric, on the other hand, Tversky claims that symmetry is

Comparing Instances of Ontological Concepts 439

the choice of similarity and apparently, direction of asymmetry is determined by the
relative salience of the stimuli; the variant is more similar to the prototype than
vice versa [30]. He demonstrates it on an example that judged similarity of North
Korea to Red China exceeds the judged similarity of Red China to North Korea.
The similarity computed by our method is symmetric.

In our approach the total similarity of two instances is aggregated as the mean
value of the similarities computed between elements connected to particular proper-
ties. However, other aggregation functions can be employed, such as weighted mean
value. Let us compare two instances InstA and InstB . Let these instances have
properties A = {property

1
, . . . , propertyn} and B = {property

1
, . . . , propertym}, re-

spectively. The way of ordering properties in the sets is not important since the
comparison method treats common properties and leftover properties differently as
described above. Let PropertySM be a similarity measure (SM) that is computed
for elements connected to a common property. Then similarity measure for two
instances is computed as follows:

sim (InstA, InstB) =

∑|A∩B|
i=0

PropertySM i (elementA, elementB)

|A ∪ B|
, (5)

where elementA and elementB are elements (instances or literals) connected to
the ith property. Since there can be datatype or object properties, we introduce
the General similarity measure that encapsulates all the similarity measures that
are available. It is computed for elements connected to a property (e.g., Proper-

tySM used in the Equation (5) is its special case). The General similarity measure

fulfils the same conditions as defined for the similarity and it gets values from the
range 〈0, 1〉.

Our method is based on the comparison of elements connected to identical pro-
perties. A special case when an instance connected to an object property is compared
with a literal does not occur as that would be against the OWL DL specification we
focus on.

The General similarity measure is computed with regard to the property type.
In the case of a datatype property the used metric depends on the corresponding
literal type as described above. For object properties, the similarity measure for
related instances is computed as the aggregation of the following partial similarity
measures:

Label-based similarity measure, which is computed employing string metrics if
labels holding meaningful information are present (if instances were acquired
automatically meaningful labels are usually not present),

Property-based similarity measure, which is computed if instances have addi-
tional properties that are used to invoke a recursive computation of the General

similarity measure,

Taxonomy distance similarity measure, which is computed as described in
Section 3.2.

440 A. Andrejko, M. Bieliková

Each of these similarity measures has values in the range 〈0, 1〉. The final similarity
measure simobject (X, Y) for two instances X and Y having the property i is computed
as the mean value of the used measures:

LabelBSM (X, Y) + PropertyBSM (X, Y) + TaxonomyDistanceSM (X, Y)

N
, (6)

where LabelBSM , PropertyBSM and TaxonomyDistanceSM are the respective simi-
larity measures described above and N is the number of similarity measures that
were employed in the individual case. For instance, if the meaningful labels are not
present, the Label based similarity measure is omitted and N = 2.

In Figure 4, there is an example showing two job offers that both consist of three
properties only. The depicted job offers have the object property (hasPrerequisite)
and two datatype properties. The notion of objects used in the figure is the same
as used in Figure 1.

JobOffer

hasPrerequisite

startDate

requires hasLevel

name

1 2 3Depth

JobOffer Date

...

String

...

Fig. 4. Example of different depths of properties of a job offer instance

The gray rounded box is used to highlight all the parts of the object property
which are considered while similarity is computed. Datatype properties have only
one assigned value, thus highlighting was not necessary. For illustration, only pro-
perties and connected elements are shown; other elements as well as possible labels
that are considered in enumeration are not depicted.

The purpose of this example is to show that particular properties can have
different depths. While the largest distance of datatype properties is 1 from the root
instance, in the case of an object property where other properties can be attached to
the instance the depth is 3 as depicted in the figure. In such properties more general
information is closer to the root instance. The farther the instances are from the
root, the more specific information they hold. If similarity is computed as a mean
value of similarities computed on particular levels, high values of similarity on lower
levels will significantly influence low similarity computed on the top level. The
similarity measure for the entire property is computed as mean value of similarities
computed on particular levels:

Comparing Instances of Ontological Concepts 441

simproperty (elementA, elementB) =

maxLevel
∑

i=0

simobject(Xi, Yi)

maxLevel
, (7)

where elementA and elementB are elements connected to the examined property ,
simobject is computed as defined in Equation (6) and maxLevel is the maximal nest-
ing depth for the property . Figure 5 shows the similarity computed for an object
property in XML notation. The element similarity specifies the aggregated simila-
rity from inner elements via its value attribute, while its attribute property specifies
the property for which the aggregated similarity is computed. In the example, par-
tial similarities were 0.2, 0.3 and 1.0 respectively to the growing distance from the
root. The total similarity measure computed for the property is 0.5.

<similarity value="0.5" property="hasPrerequisite">
<parts>
<similarity value="0.2" property="requires"/>
<parts>

<similarity value="0.3" property="hasLevel"/>
<parts>
<similarity value="1.0"/>

</parts>
</parts>

</parts>
</similarity>

Fig. 5. Example on computing similarity for object property

Decreasing the weight with growing distance seems to be reasonable and we
propose to employ the reciprocal function of x, where x stands for level of nesting
depth. Thus, the weight for each level is computed as:

weightx =
1

x
. (8)

When using weights the similarity for a property is computed as follows:

simproperty (elementA, elementB) =

maxLevel
∑

i=0

weighti × simobject (Xi, Yi)

maxLevel
. (9)

Employing weights in the similarity estimation for the object property from Figure 5
is shown in Figure 6 and results in the similarity measure 0.2278. The similarity

element is extended with the weight attribute that specifies the weight computed
based on the nesting depth.

Now, the computed similarity is closer to the similarity computed on the highest
level and shows less of an influence from bottom levels. The proposed weights are
also useful in the same way for the datatype properties. Since depth of datatype

442 A. Andrejko, M. Bieliková

<similarity value="0.2278" property="hasPrerequisite">
<parts>
<similarity value="0.2" property="requires" weight="1.0000"/>
<parts>
<similarity value="0.3" property="hasLevel" weight="0.5000"/>
<parts>

<similarity value="1.0" weight="0,3333"/>
</parts>

</parts>
</parts>
</similarity>

Fig. 6. Similarity influenced by weights with regard to nesting depth

properties connected to the root instance always equals 1, the computed weight also
equals 1 and the computed similarity measure is thus only the result of the used
metric according to the literal type.

5 PERSONALIZED SIMILARITY AND USER CHARACTERISTICS

The aggregate of partial similarities is always the same no matter what the context
is. To improve the accuracy of our similarity evaluation method with respect to
individual users’ preferences (if a user model is available), we introduce weights
that personalize the similarity estimation which allows us to compute personalized
similarity for individual users:

sim (InstA, InstB) =

∑|A∩B|
i=0

weighti × PropertySM i (elementA, elementB)
∑

weight
, (10)

where the semantics of variables is the same as in Equation (5). The weight variable
has values in the range 〈1, w〉 based on the match between the property and the
value of the corresponding characteristic in the user model. Since we assume that
the user’s likes should have greater influence on the total similarity, we increase
the weights of properties for which corresponding characteristics are present in the
respective user model and their values match with the compared instance. The
exact increase of individual weights is the subject of experiments for any particular
domain. The meaning of the proposed weight is as follows:

• “1” if there is no correlation between a property of the instance and a charac-
teristic in the user model; this weight also solves problems when the user model
is not available and thus has no influence on the computing of personalized
similarity for a particular user;

• “w” if there is match not only between a property of the instance and a charac-
teristic but also between their values;

• a value between the previous two values means that there is a match between
the examined property of the instance and the user model, but the related value

Comparing Instances of Ontological Concepts 443

is not identical. For instance, the values could be instances that are located on
different levels in the taxonomy tree (e.g., a city belongs to the same region as
the city preferred by the user in the user model but it is not that city).

For personalization purposes, our goal is not only to compute the similarity between
instances but also to investigate reasons that “caused” the similarity or difference.
User preferences can be deduced from implicit and explicit user feedback (e.g., rat-
ing). We assume that if the instance includes a property with a value the user
likes it will likely influence his or her rating towards higher (or positive) values. On
the other hand, properties of the content with the values that the user dislikes will
influence rating towards lower (or negative) values.

Since we are interested in properties that significantly influence user rating and
thus also total similarity, we introduced two threshold values that divide properties
into three sets based on the computed similarities. If the similarity computed for
a property is greater than the positive threshold then the property is assigned to
the positive set, if the computed similarity is lower than the negative threshold the
property is assigned to the negative set.

6 EXPERIMENTAL EVALUATION

Experimental evaluation was performed using the software tool called Concept Com-
parer (abbreviated ConCom), which was implemented in Java and uses the Sesame
framework to access ontological models represented in OWL DL. For datatype prop-
erties, the Levenshtein method was used while for object properties the proposed
taxonomy distance was employed. The evaluation was performed on the job of-
fer ontology developed in the course of the research project NAZOU. The smallest
dataset contains 100 job offers mostly from the information technologies field. Con-

Com can work in two modes which are configurable from the command line. In
the first mode, the total similarity is computed for all properties, i.e. if a property
occurs in one instance only then 0 is aggregated. In other case, only properties that
are common for both instances are considered, thus other properties are ignored and
do not influence the total similarity.

Experiment 1: All Properties vs. Common Properties

The aim of the experiment was to compare results computed in two ways and to
specify positive and negative thresholds. In the experiment, the similarity for all
possible 10 000 instance pairs was computed. The experiment showed that results
satisfy all criteria required for similarity as defined in Section 4. Figure 7 depicts
a sample of 600 instance pairs for which similarity was enumerated in both operating
modes of ConCom – the computed values are ordered by similarities computed for
all properties.

The thresholds were specified experimentally for the job offer domain. We com-
puted similarity for 55 000 properties employing the described method. Properties

444 A. Andrejko, M. Bieliková

0,00

0,20

0,40

0,60

0,80

1,00

0 100 200 300 400 500 600

Examined pair

S
im

il
a

ri
ti

e
s

All properties Common properties

Fig. 7. Similarity computed by ConCom considering all/common properties

with similarity equal to 0.0 or 1.0 were not considered to eliminate identities and
properties with no occurrence in both instances. The rest of the properties was or-
dered according to the computed similarity measure and using the Pareto principle

(also known as 20/80 rule). We split the most influencing 20 % in half to select 10 %
of the highest and 10 % of the lowest values. This way, the positive threshold was set
to 0.65 and the negative threshold to 0.25. The domain dependence of thresholds is
the subject of further experiments.

The properties classified by this method can be transformed into user charac-
teristics and used for populating or updating existing user models. Since the trans-
formation of properties into user characteristics as well as their updating in the user
model is beyond the scope of this paper, the presented method only prepares inputs
for further processing. Using both the positive and negative set of properties in
combination with user feedback for user characteristics updates in the user model
would improve user characteristics estimation.

Using only common properties in our experiments with job offers resulted in
a narrow range of similarity values – in 89 % of the cases the computed similarities
were in the range 0.30 to 0.75. We set experimentally the positive threshold to 0.65
and the negative threshold to 0.25 but such thresholds do not produce useful pro-
perties to be used for user characteristics discovery. Therefore, similarity computed
for all properties must be used to acquire properties based on thresholds.

Experiment 2: ConCom vs. Human

The aim of the experiment was to find out which type of the similarity computed
by ComCom better mimics similarity assessed by human users. A sample of 300 job
offer pairs was used with 30 randomly selected sample pairs that were presented to
the user twice in order to verify evaluation consistency. The user assessed similarity
on a scale from 0 to 7, specifying that offers had nothing in common (rating 0) to

Comparing Instances of Ontological Concepts 445

equivalent offers (rating 7). Afterwards, the acquired values were normalized to the
similarity interval.

Similarity computed for common properties was used for comparison with human
estimation since its values more accurately mimic human assigned similarity values.
This could have been caused by the fact that human users can more easily evaluate
a lower amount of (common) properties. For illustration, the result for a set of 40
randomly selected offer pairs is depicted in Figure 8.

0,00

0,20

0,40

0,60

0,80

0 5 10 15 20 25 30 35 40

Examined pair

S
im

il
a

ri
ti

e
s

Human Common properties

Fig. 8. Similarity estimated by a human and by ConCom for common properties

The cause of evaluation differences is likely derived from specific preferences
of the human user who usually makes decisions based on the properties he/she
considers important. It is likely that another user would evaluate the same sample
differently.

We have not found significant differences between the two evaluations of the
same instance pairs. In 70 % of the cases, the pairs were assigned identical similarity
values, in 16.67 % of cases the difference was one point on the scale, in 10 % of cases
it was two points while only in 3.33 % of cases it was three points. This shows that
users do not necessarily evaluate the same content in the same way if an adequately
large scale is provided and specially if there is some time delay between evaluations.

Consequently, for further experiments where the user model was involved we
used similarity computed only for common properties.

Experiment 3: Adjusting Weight for Personalized Similarity

We assume that a user’s likes or preferences stored in the user model influence
personal similarity perception. Therefore, if the user model is available, its cha-
racteristics should have a notable influence on the total estimated similarity. The
goal for this experiment was to identify the upper weight bound to be used in the
computation of personalized similarity.

Figure 9 depicts similarities computed with respect to a given user model, which
consisted of only one characteristic (hasDutyLocation). The job offers used in the

446 A. Andrejko, M. Bieliková

experiment contained the hasDutyLocation object property and its value was the
same as in the user model.

0,20

0,40

0,60

0,80

1,00

0 2 4 6 8 10 12

Examined pair

S
im

il
a

ri
ti

e
s

ConCom (w = 1) w = 2.0 w = 4.0

Fig. 9. Weighted similarity computed with regard to a user model

The growth of the similarity estimation is not linear as it depends on the number
of properties the job offers consist of. The differences were in the range 0.06 to 0.12
for the upper bound w set to 2.0 and from 0.15 to 0.26 for w = 4.0, and varied based
on the number of properties. Job offers used in the experiment had an average of 16
properties. Our experiment shows that using doubled weights causes a significant
improvement in the similarity evaluation and is a worthy selection.

Experiment 4: Personalized Similarity

The aim of the last experiment was to investigate how the user model influences
similarity computation and accuracy. In the experiment a user model with three
characteristics was used – hasDutyLocation, offersPosition and hoursPerWeek. We
use an overlay ontology-based user model4 that was developed as a part of the
NAZOU project. The user model was acquired by the LogAnalyzer tool [3] and
contained both characteristics and preferences. A preference indicates that the re-
lated property is important for the user but there is no specific value assigned to
it. For preferences we consider the weight as half of the upper bound employed in
the computation of personalized similarity (weight = w/2). Doubled weights were
used for characteristics as described in the previous experiment. If a property occurs
in the user model both as a characteristic and as a preference, the final weight is
computed as the sum of their weights, i.e. weight = w + w/2.

The experiment was performed on the sample of 10 000 job offer pairs. Figure 10
depicts the change in the similarity estimation caused by employing the user model
(200 pairs depicted for illustration).

4 Ontology-based UM, http://nazou.fiit.stuba.sk/home/files/nazou um.pdf

Comparing Instances of Ontological Concepts 447

-0,1

-0,05

0

0,05

0,1

0,15

0 50 100 150 200

Examined pair

S
im

il
a

ri
ty

 c
h

a
n

g
e

Fig. 10. Change in similarity estimation caused by the employed user model

The employed user model influences the computed similarity in two ways. If
the compared properties are similar (i.e., for high values of the similarity measure)
the personalized similarity increases towards higher values (a positive change in
the figure), while if they are different the personalized similarity decreases to lower
values (a negative change).

7 RELATED WORK

Mainly for the purpose of ontology management, several approaches to comparison
of ontology concepts or their instances were developed. There are several overviews
aimed mostly at ontology matching [12, 16, 22] and related areas (e.g., extending
existing approaches with detecting mapping bugs [31]). In this section, we focus
mainly on approaches that primarily consider ontology instances and deal with their
similarity.

A method computing semantic similarity among instances within an ontology,
which considers ontology and context layers, is described in [2]. The data layer
estimates similarity by considering simple or more complex types, such as integer
and string. Distinguishing only numbers and strings in datatype properties is not
satisfactory (e.g., Boolean values need to be treated carefully). We propose datatype
similarity metrics that deal with all types of datatype properties as defined by XML
Schema. The ontology layer exploits relations between entities in the ontology and
the context layer assesses the similarity according to how the entities are used in
some external contexts. Considering the context, there are three operations which
influence semantic similarity – cardinality, intersection and similarity of/between
properties or relations. The total similarity measure is a weighted combination
of external and extensional similarity. The external similarity employs structural
aspects of instances in the comparison (classes and slots which instances belong to
are investigated), whereas the extensional similarity performs comparison in term
of the instances’ properties and relations.

448 A. Andrejko, M. Bieliková

An approach to ontology matching based on instances is described in [18]. Its
main idea is to derive similarity between concepts from the number of shared in-
stances, since the number of instances is usually greater than the number of con-
cepts. Moreover, using instances makes ontology matching independent from con-
cept names and other metadata. The novelty of this approach is in using well known
similarity metrics (baseline, minimum, dice and kappa) from “traditional” ontology
matching in instance-based ontology matching. A combination of these metrics is
used to improve the achieved matching results. The best results were achieved as
a union of the minimum and kappa metrics. The drawback of this approach lies
in the fact that it only considers a given number of instances of the concept. Also
properties assigned to the concept and their types (object or datatype) should be
considered to achieve more accurate similarity enumeration since additional infor-
mation about instances is provided. Another approach presented here is matching
based on metadata. Concepts are matched with regard to trigram similarity of their
names, though experiments showed that it is not very effective due to high diversity
in the concept names.

PROMPT is an algorithm for ontology merging and alignment [23] that guides
the user in creation of a merged ontology. It starts with creating an initial list of
matches based on class names where linguistic similarity metrics are employed. Af-
terwards, the user has two options: either to select one of the suggestions provided
by PROMPT or to use the editing environment to perform one’s own changes in
the ontology. The next step consists of automatic operations based on the previous
choice. These steps are repeated in cycles. When a conflict occurs, a list of solu-
tions is provided. PROMPT performs the merging of concepts, properties, relations
between concepts and properties, and copies parts of a hierarchy (classes including
their parents etc.). We consider name matching as a drawback of the algorithm
since names of the concepts do not have to necessarily carry meaning, especially
when automatic approaches are used to build or populate an ontology.

A two phase method, for instance comparison of tourism ontology concepts, is
described in [10]. The first phase performs concept preprocessing. Two graphs are
built – an inheritance graph that organizes ontological concepts according to the
generalization hierarchy and a similarity graph in which nodes relate to concepts
and edges correspond to the degree of similarity. The similarity itself is enumerated
in the second phase consisting of three steps. First, flat structural similarity is
computed exploiting structural slots (part, related, predicate). Second, hierarchical
structure is exploited by using results from the previous step and extending them by
further elements according to the hierarchical relationships. In the third step, the
final similarity measure between concepts is computed as a result of combination of
two previous steps. The advantage of this approach is that total similarity for more
than two concepts can be expressed as one number. Furthermore, the similarity
of concepts from different contexts can be computed as well. The main drawback
of this method is that a similarity ontology holding similarity relations between
properties and entity names from the domain ontology must be provided in order
for the similarity graph to be built.

Comparing Instances of Ontological Concepts 449

The comparison with an “ideal” instance related to a particular domain is used
in a search method based on user criteria [13]. The method also supports search for
instances that do not entirely satisfy the criteria of the ideal offer. The similarity of
particular properties of the offer is enumerated as the distance between their values.
The computed distances are afterwards converted to a degree of similarity taking into
account the biggest possible distance. To distinguish between particular properties,
precision is introduced that reflects a user’s subjective tolerance. Furthermore, the
user is allowed to specify for each criterion its importance and whether it has to be
satisfied. This approach is aimed at searching similar instances according to a user’s
given criteria. Unlike our approach it computes asymmetric similarity.

A common property of the aforementioned approaches is that they do not inves-
tigate the causes of similarity. Automated similarity enumeration mimics the human
similarity measure if different strategies are used based on clusters of users [4]. Users
gave reasons of their assessments which were the basis for machine learning algo-
rithms that assigned users to specific clusters. We use an automated approach to
figure out reasons of similarity, which also contributes to the scrutability of the user
model [17].

8 CONCLUSIONS

We described a method for the comparison of instances of ontological concepts based
on the recursive traversing of an instance’s structure. The final similarity is the
aggregate result of the individual similarities computed for the particular properties
while their type is considered to select a suitable similarity metric for each property.
The introduction of similarity metrics for properties allows us to take advantage
of semantics provided by ontological representation, which allowed us to extend
similarity with personalized weights reflecting users’ individuality.

We have developed the software tool ConCom (Concept Comparer) that reali-
zes the proposed method. ConCom supports the computing of two kinds of simi-
larity – either for all properties or only for properties that are common for both
compared instances. Our experiments showed that similarity where all properties
are considered is more suitable for discovering user characteristics, while similarity
computed for common properties only better mimics the similarity estimated by
real users. Furthermore, we investigated reasons (properties) that influenced user
evaluation of content (e.g., interest). We introduced two threshold values used to
discover a user’s likes and dislikes. From the personalization perspective we were
only interested in the two outer sets – positive and negative items. The thresholds
were set experimentally for the job offers application domain – the positive threshold
to 0.65 and negative threshold to 0.25. The identified properties can be used by other
tools for updating of characteristics in the user model or for acquisition of new ones.

We also performed experiments in the scientific publications domain to inves-
tigate domain independence of our method, where the computed similarity can be
useful, e.g. for clustering algorithms [11], semantic annotation tools [19], context

450 A. Andrejko, M. Bieliková

search [21] or repository maintenance tools [8] as well as for the recommendation
of similar content in recommender systems [15]. Though, the aim here was to im-
prove semantic search using personalized navigation within ontology instances that
represent metadata of large information spaces [29].

Acknowledgement

This work was partially supported by the Slovak Research and Development Agency
under the contract No. APVT-20-007104, the State programme of research and
development “Establishing of Information Society” under the contract No. 1025/04
and the Scientific Grant Agency of Slovak Republic, grant No. VG1/0508/09.

REFERENCES

[1] Andrejko, A.—Barla, M.—Tvarožek, M.: Comparing Ontological Concepts to
Evaluate Similarity. In P. Návrat, P. Bartoš, M. Bieliková, L. Hluchý, P. Vojtáš (Eds.):
Tools for Acquisition, Organization and Presenting of Information and Knowledge:
Research Project Workshop, 2006, pp. 71–78.

[2] Albertoni, R.—De Martino, M.: Semantic Similarity of Ontology Instances
Tailored on the Application Context. On the Move to Meaningful Internet Systems
2006: CoopIS, DOA, GADA, and ODBASE, Vol. 4275, Lecture Notes in Computer
Science, 2006, pp. 1020–1038.

[3] Barla, M.—Bieliková, M.: Estimation of User Characteristics using Rule-based
Analysis of User Logs. In: Data Mining for User Modeling: Proceedings of Workshop
held at UM2007, 2007, pp. 5–14.

[4] Bernstein, A.—Kaufmann, E.—Bürki, C.—Klein, M.: How Similar Is It?
Towards Personalized Similarity Measures in Ontologies. In O.K. Ferstl, E. J. Sinz,
S. Eckert, T. Isselhorst (Eds.): 7th International Conference Wirtschaftsinformatik
(WI-2005), Physica-Verlag, Bamberg, Germany, 2005, pp. 1347–1366.

[5] Bisson, G.: Why and How to Define a Similarity Measure for Object Based Repre-
sentation Systems. In: Towards Very Large Knowledge Bases, IOS Press, Amsterdam,
1995, pp. 236–246.

[6] Brusilovsky, P.—Corbett, A.—de Rosis, F.: User Modeling 2003: Preface.
In P. Brusilovsky et al. (Eds.): 9th International Conference on User Modelling,
Vol. 2702, Johnstown, USA, Lecture Notes in Computer Science, 2003.

[7] Chen, H.—Ma, J.—Wang, Y.—Wu, Z.: A Survey on Semantic E-Science Appli-
cations. Computing and Informatics, Vol. 27, 2008, No. 1, pp. 5–20.

[8] Ciglan, M.—Bab́ık, M.—Laclav́ık, M.—Budinská, I.—Hluchý, L.: Corpo-

rate Memory: A Framework for Supporting Tools for Acquisition, Organization and
Maintenance of Information and Knowledge. In: Proceedings of 9th International
Conference ISIM ’06 “Information Systems Implementation and Modelling”, Brno,
April, MARQ Ostrava, 2006, pp. 185–192.

Comparing Instances of Ontological Concepts 451

[9] Ding, L.—Kolari, P.—Ding, Z.—Avancha, S.: Using Ontologies in the Se-

mantic Web: A Survey. In R. Sharman, R. Kishore, R. Ramesh (Eds.): Ontolo-
gies: A Handbook of Principles, Concepts and Applications in Information Systems,
Vol. 14, Springer, 2007, pp. 79–113.

[10] Formica, A.—Missikoff, M.: Concept Similarity in SymOntos: An Enterprise
Ontology Management Tool. Computer Journal, Vol. 45, 2002, No. 6, pp. 583–594.

[11] Frivolt, G.—Pok, O.: Comparison of Graph Clustering Approaches. In
M. Bieliková (Ed.): Proceedings in IIT-SRC 2006, Slovak University of Technology,
2006, pp. 168–175.

[12] Giunchiglia, F.—Yatskevich, M.—Shvaiko, P.: Semantic Matching: Algo-
rithms and Implementation. Journal on Data Semantics IX, Vol. 4601, Lecture Notes
in Computer Science, 2007, pp. 1–38.

[13] Gurský, P.—Pázman, R.—Vojtáš, P.: Ontea: On Supporting Wide Range of
Attribute Types for Top-k Search. Computing and Informatics, Vol. 28, 2009, No. 4,
pp. 483–513.

[14] Heeffer, A.: Negative Numbers as an Epistemic Difficult Concept: Some Lessons
From History. In: C. Tzanakis (Ed.): Proceedings of the History and Pedagogy of
Mathematics Conference, July 2008, Mexico, 2008 (to be published).

[15] Horváth, T.: A Model of User Preference Learning for Content-Based Recom-
mender Systems. Computing and Informatics, Vol. 28, 2009, No. 4, pp. 453–481.

[16] Kalfoglou, Y.—Schorlemmer, M.: Ontology Mapping: The State of the Art.

The Knowledge Engineering Review, Vol. 18, 2003, No. 1, pp. 1–31.

[17] Kay, J.: Stereotypes, Student Models and Scrutability. In: ITS ’00: Proceedings of
the 5th International Conference on Intelligent Tutoring Systems. Vol. 1839, Lecture
Notes in Computer Science, 2000, pp. 19–30.

[18] Kirsten, T.—Thor, A.—Rahm, E.: Instance-Based Matching of Large Life Scien-
ce Ontologies. Data Integration in the Life Sciences, Vol. 4544, Lecture Notes in
Computer Science, 2007, pp. 172–187.

[19] Laclav́ık, M.—Šeleng, M.—Ciglan, M.—Hluchý, L.: Ontea: Platform for
Pattern Based Automated Semantic Annotation. Computing and Informatics, Vol. 28,
2009, No. 4, pp. 555–579.

[20] Návrat, P.—Bieliková, M.—Rozinajová, V.: Acquiring, Organising and Pre-
senting Information and Knowledge from the Web. In: CompSysTech ’06, Bulgarian
Chapter of ACM, 2006.

[21] Návrat, P.—Taraba, T.: Context Search. In Y. Li et al. (Eds.): 2007
IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent
Agent Technology (Workshops), Silicon Valley, USA, Los Alamitos USA: IEEE Com-
puter Society, 2007, pp. 99–102.

[22] Noy, N. F.: Semantic Integration: A Survey of Ontology-based Approaches. ACM
SIGMOD Record, Vol. 33, No. 4, 2004, pp. 65–70.

[23] Noy, N. F.—Musen, M.A.: PROMPT: Algorithm and Tool for Automated Onto-
logy Merging and Alignment. Proceedings of the Seventeenth National Conference on
Artificial Intelligence and Twelfth Conference on Innovative Applications of Artificial
Intelligence, MIT Press/AAAI Press, 2000, pp. 450–455.

452 A. Andrejko, M. Bieliková

[24] Pázman, R.: Values Normalization with Logic Programming. In P. Návrat,

P. Bartoš, M. Bieliková, L. Hluchý, P. Vojtáš (Eds.): Tools for acquisition, orga-
nization and presenting of information and knowledge: Research project workshop,
2007, pp. 134–141.

[25] Resnik, P.: Semantic Similarity in a Taxonomy: An Information-Based Measure and
Its Application to Problems of Ambiguity in Natural Language. Journal of Artificial
Intelligence Research, Vol. 11, 1999, pp. 95–130.

[26] Semanč́ık, R.: Basic Properties of the Persona Model. Computing and Informatics,
Vol. 26, 2007, No. 2, pp. 105–121.

[27] Studer, R.—Benjamins, V.R.—Fensel, D.: Knowledge Engineering: Principles
and Methods. Data Knowledge Engineering, Vol. 25, 1998, No. 1–2, pp. 161–197.

[28] Tury, M.—Bieliková, M.: An Approach to Detection Ontology Changes. In:
ICWE ’06: Workshop proceedings of the sixth international conference on Web engi-
neering, Palo Alto, California, ACM Press, 2006.

[29] Tvarožek, M. et al.: Improving Semantic Search via Integrated Personalized.
Faceted and Visual Graph Navigation. In: SOFSEM2008, Vol. 4910, Lecture Notes
in Computer Science, 2008, pp. 778–789.

[30] Tversky, A.: Preference, Belief, and Similarity: Selected Writings. MIT Press,
2003.

[31] Wang, P.—Xu, B.: Debugging Ontology Mappings: A Static Approach. Computing
and Informatics, Vol. 27, 2008, No. 1, pp. 21–36.

Anton Andrejko received his Master degree in 2004 from
Technical University in Košice and his Ph.D. degree at Slovak

University of Technology, Faculty of Informatics and Information
Technologies in 2009. He works in the area of user modeling and
personalization.

Mária Bielikov�a received her Master degree (with summa cum
laude) in 1989 and her Ph. D. degree in 1995 both from Slovak
University of Technology in Bratislava. Since 2005, she has been
a Full Professor, presently at Institute of Informatics and Soft-
ware Engineering, Slovak University of Technology. Her research
interests include software knowledge engineering and web infor-
mation systems, especially adaptive web-based systems includ-
ing user modeling.

